scispace - formally typeset
Journal ArticleDOI

Wiring specificity in the direction-selectivity circuit of the retina

Kevin L. Briggman, +2 more
- 10 Mar 2011 - 
- Vol. 471, Iss: 7337, pp 183-188
Reads0
Chats0
TLDR
It is shown, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglION cell’s preferred direction.
Abstract
The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough scale. Here we show, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglion cell's preferred direction. Our findings indicate that a structural (wiring) asymmetry contributes to the computation of direction selectivity. The nature of this asymmetry supports some models of direction selectivity and rules out others. It also puts constraints on the developmental mechanisms behind the formation of synaptic connections. Our study demonstrates how otherwise intractable neurobiological questions can be addressed by combining functional imaging with the analysis of neuronal connectivity using large-scale electron microscopy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

On the Technology Prospects and Investment Opportunities for Scalable Neuroscience

TL;DR: A diverse set of technologies are investigated with the purpose of anticipating their development over the span of the next 10 years and categorizing their impact in terms of short-term, medium-term and longer-term deliverables.
Journal ArticleDOI

Connectomic constraints on computation in feedforward networks of spiking neurons

TL;DR: In this paper, the authors consider the question of how the wiring diagram of neurons imposes constraints on what neural circuits can compute, when we cannot assume detailed information on the physiological response properties of the neurons.
Journal ArticleDOI

Electron Microscopy at Scale.

TL;DR: New experimental and computational technologies for large-scale electron microscopy data collection and analysis are reported, and through saturated reconstruction uncover synaptic connectional specificity that cannot be predicted by simple axonal-dendritic proximity.
Journal ArticleDOI

Neuronal Substrates for Infrared Contrast Enhancement and Motion Detection in Rattlesnakes.

TL;DR: The hierarchically increasing motion sensitivity potentially derives from a direction-specific inhibition or spike frequency adaptation of LTTD neuronal discharge that becomes further pronounced by convergent projections onto individual RC neurons.
Journal ArticleDOI

Theoretical principles of multiscale spatiotemporal control of neuronal networks: a complex systems perspective

TL;DR: The possibility that brain-wide complex neural computations can be dissected into a hierarchy of computational motifs that rely on smaller circuit modules interacting at multiple scales is evaluated.
References
More filters
Journal ArticleDOI

Two-Photon Laser Scanning Fluorescence Microscopy

TL;DR: The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation.
Journal ArticleDOI

User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability

TL;DR: The methods and software engineering philosophy behind this new tool, ITK-SNAP, are described and the results of validation experiments performed in the context of an ongoing child autism neuroimaging study are provided, finding that SNAP is a highly reliable and efficient alternative to manual tracing.
Journal ArticleDOI

The structure of the nervous system of the nematode Caenorhabditis elegans

TL;DR: The structure and connectivity of the nervous system of the nematode Caenorhabditis elegans has been deduced from reconstructions of electron micrographs of serial sections as discussed by the authors.
Journal ArticleDOI

The mechanism of directionally selective units in rabbit's retina.

TL;DR: Experiments are described which show, first, that directional selectivity is not due to optical aberrations of some kind and, secondly, that it is not a simple matter of the latency of response varying systematically across the receptive field.
Journal ArticleDOI

Serial block−face scanning electron microscopy to reconstruct three−dimensional tissue nanostructure

TL;DR: It is demonstrated that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope, opening the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits.
Related Papers (5)