scispace - formally typeset
Journal ArticleDOI

Wiring specificity in the direction-selectivity circuit of the retina

Kevin L. Briggman, +2 more
- 10 Mar 2011 - 
- Vol. 471, Iss: 7337, pp 183-188
Reads0
Chats0
TLDR
It is shown, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglION cell’s preferred direction.
Abstract
The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough scale. Here we show, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglion cell's preferred direction. Our findings indicate that a structural (wiring) asymmetry contributes to the computation of direction selectivity. The nature of this asymmetry supports some models of direction selectivity and rules out others. It also puts constraints on the developmental mechanisms behind the formation of synaptic connections. Our study demonstrates how otherwise intractable neurobiological questions can be addressed by combining functional imaging with the analysis of neuronal connectivity using large-scale electron microscopy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision.

TL;DR: This study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Journal ArticleDOI

Trigger features and excitation in the retina

TL;DR: This review focuses on recent advances in understanding of how neural divergence and convergence give rise to complex encoding properties of retinal ganglion cells and highlights two advances in technique that promise to provide future insights; automation of electron microscope data collection and analysis, and the use of the ideal observer to quantify neural performance at all levels.
Journal ArticleDOI

Embedded ensemble encoding hypothesis: The role of the "Prepared" cell.

TL;DR: It is hypothesized that “embedded ensemble encoding” may be an important organizing principle in networks of neurons and related the changes from “resting” to “depolarized” neuronal state to changes in ensemble dynamics and in network information flow.
Journal ArticleDOI

Effective automated pipeline for 3D reconstruction of synapses based on deep learning.

TL;DR: A fully automated method that relies on deep learning to realize the 3D reconstruction of synapses in electron microscopy (EM) images, providing neurologists with a rapid approach for obtaining rich synaptic statistics.
Journal ArticleDOI

Advanced Fluorescence Protein-Based Synapse-Detectors.

TL;DR: The latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity are reviewed and associated technologies in gene delivery, tissue processing, and computational image analysis are identified that will play a crucial role in bridging the gap between synapse- and system-level neuroscience.
References
More filters
Journal ArticleDOI

Two-Photon Laser Scanning Fluorescence Microscopy

TL;DR: The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation.
Journal ArticleDOI

User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability

TL;DR: The methods and software engineering philosophy behind this new tool, ITK-SNAP, are described and the results of validation experiments performed in the context of an ongoing child autism neuroimaging study are provided, finding that SNAP is a highly reliable and efficient alternative to manual tracing.
Journal ArticleDOI

The structure of the nervous system of the nematode Caenorhabditis elegans

TL;DR: The structure and connectivity of the nervous system of the nematode Caenorhabditis elegans has been deduced from reconstructions of electron micrographs of serial sections as discussed by the authors.
Journal ArticleDOI

The mechanism of directionally selective units in rabbit's retina.

TL;DR: Experiments are described which show, first, that directional selectivity is not due to optical aberrations of some kind and, secondly, that it is not a simple matter of the latency of response varying systematically across the receptive field.
Journal ArticleDOI

Serial block−face scanning electron microscopy to reconstruct three−dimensional tissue nanostructure

TL;DR: It is demonstrated that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope, opening the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits.
Related Papers (5)