scispace - formally typeset
Search or ask a question
Browse all papers

Journal ArticleDOI
TL;DR: This paper presents a portable, assistive, soft robotic glove designed to augment hand rehabilitation for individuals with functional grasp pathologies that has the potential to increase user freedom and independence through its portable waist belt pack and open palm design.

1,164 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: In this article, the authors extend DenseNets to semantic segmentation and achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining.
Abstract: State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions.,,,,,, Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train.,,,,,, In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets.

1,163 citations


Journal ArticleDOI
TL;DR: The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood and future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to better understanding of plant development.
Abstract: Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk mechanisms among various hormones in coordinating growth under stress will be an important theme in the field of abiotic stress research. Such efforts will help to reveal important points of genetic control that can be useful to engineer stress tolerant crops.

1,163 citations


Journal ArticleDOI
TL;DR: A picture emerges of a child born with an immature, innate and adaptive immune system, which matures and acquires memory as he or she grows then goes into decline in old age.
Abstract: This article reviews the development of the immune response through neonatal, infant and adult life, including pregnancy, ending with the decline in old age. A picture emerges of a child born with an immature, innate and adaptive immune system, which matures and acquires memory as he or she grows. It then goes into decline in old age. These changes are considered alongside the risks of different types of infection, autoimmune disease and malignancy.

1,163 citations


Proceedings ArticleDOI
14 Jun 2020
TL;DR: This work constructs BDD100K, the largest driving video dataset with 100K videos and 10 tasks to evaluate the exciting progress of image recognition algorithms on autonomous driving and shows that special training strategies are needed for existing models to perform such heterogeneous tasks.
Abstract: Datasets drive vision progress, yet existing driving datasets are impoverished in terms of visual content and supported tasks to study multitask learning for autonomous driving. Researchers are usually constrained to study a small set of problems on one dataset, while real-world computer vision applications require performing tasks of various complexities. We construct BDD100K, the largest driving video dataset with 100K videos and 10 tasks to evaluate the exciting progress of image recognition algorithms on autonomous driving. The dataset possesses geographic, environmental, and weather diversity, which is useful for training models that are less likely to be surprised by new conditions. Based on this diverse dataset, we build a benchmark for heterogeneous multitask learning and study how to solve the tasks together. Our experiments show that special training strategies are needed for existing models to perform such heterogeneous tasks. BDD100K opens the door for future studies in this important venue.

1,163 citations


Journal ArticleDOI
TL;DR: It is shown that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols, and it is demonstrated that size exclusion isolation is comparable to density gradient purification of exosomes.
Abstract: Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research.

1,163 citations


Journal ArticleDOI
TL;DR: A high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis.
Abstract: Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

1,162 citations


Proceedings ArticleDOI
18 Sep 2017
TL;DR: Matterport3D as discussed by the authors is a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 images of 90 building-scale scenes.
Abstract: Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification.

1,162 citations


Proceedings ArticleDOI
01 Jun 2019
TL;DR: This method improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task, and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second.
Abstract: In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task. Once trained, SiamMask solely relies on a single bounding box initialisation and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second. Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state-of-the-art among real-time trackers on VOT-2018, while at the same time demonstrating competitive performance and the best speed for the semi-supervised video object segmentation task on DAVIS-2016 and DAVIS-2017.

1,162 citations


Journal ArticleDOI
03 May 2016-JAMA
TL;DR: In the United States in 2010-2011, there was an estimated annual antibiotic prescription rate per 1000 population of 506, but only an estimated 353 antibiotic prescriptions were likely appropriate, supporting the need for establishing a goal for outpatient antibiotic stewardship.
Abstract: Importance The National Action Plan for Combating Antibiotic-Resistant Bacteria set a goal of reducing inappropriate outpatient antibiotic use by 50% by 2020, but the extent of inappropriate outpatient antibiotic use is unknown. Objective To estimate the rates of outpatient oral antibiotic prescribing by age and diagnosis, and the estimated portions of antibiotic use that may be inappropriate in adults and children in the United States. Design, Setting, and Participants Using the 2010-2011 National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey, annual numbers and population-adjusted rates with 95% confidence intervals of ambulatory visits with oral antibiotic prescriptions by age, region, and diagnosis in the United States were estimated. Exposures Ambulatory care visits. Main Outcomes and Measures Based on national guidelines and regional variation in prescribing, diagnosis-specific prevalence and rates of total and appropriate antibiotic prescriptions were determined. These rates were combined to calculate an estimate of the appropriate annual rate of antibiotic prescriptions per 1000 population. Results Of the 184 032 sampled visits, 12.6% of visits (95% CI, 12.0%-13.3%) resulted in antibiotic prescriptions. Sinusitis was the single diagnosis associated with the most antibiotic prescriptions per 1000 population (56 antibiotic prescriptions [95% CI, 48-64]), followed by suppurative otitis media (47 antibiotic prescriptions [95% CI, 41-54]), and pharyngitis (43 antibiotic prescriptions [95% CI, 38-49]). Collectively, acute respiratory conditions per 1000 population led to 221 antibiotic prescriptions (95% CI, 198-245) annually, but only 111 antibiotic prescriptions were estimated to be appropriate for these conditions. Per 1000 population, among all conditions and ages combined in 2010-2011, an estimated 506 antibiotic prescriptions (95% CI, 458-554) were written annually, and, of these, 353 antibiotic prescriptions were estimated to be appropriate antibiotic prescriptions. Conclusions and Relevance In the United States in 2010-2011, there was an estimated annual antibiotic prescription rate per 1000 population of 506, but only an estimated 353 antibiotic prescriptions were likely appropriate, supporting the need for establishing a goal for outpatient antibiotic stewardship.

1,162 citations


Journal ArticleDOI
TL;DR: The characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria are outlined, focusing on the so-called ESKAPEE group of organisms, which have become the most problematic hospital pathogens.
Abstract: SUMMARY Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.

Proceedings Article
07 Dec 2015
TL;DR: This work builds on top of the Ladder network proposed by Valpola which is extended by combining the model with supervision and shows that the resulting model reaches state-of-the-art performance in semi-supervised MNIST and CIFAR-10 classification in addition to permutation-invariant MNIST classification with all labels.
Abstract: We combine supervised learning with unsupervised learning in deep neural networks. The proposed model is trained to simultaneously minimize the sum of supervised and unsupervised cost functions by backpropagation, avoiding the need for layer-wise pre-training. Our work builds on top of the Ladder network proposed by Valpola [1] which we extend by combining the model with supervision. We show that the resulting model reaches state-of-the-art performance in semi-supervised MNIST and CIFAR-10 classification in addition to permutation-invariant MNIST classification with all labels.

Journal ArticleDOI
TL;DR: A selection guide of common solvents has been elaborated, based on a survey of publically available solvent selection guides, and a set of Safety, Health and Environment criteria is proposed, aligned with the GHS and European regulations.

Journal ArticleDOI
06 May 2020-Science
TL;DR: Preclinical results of an early vaccine candidate called PiCoVacc, which protected rhesus macaque monkeys against SARS-CoV-2 infection when analyzed in short-term studies, support the clinical development and testing of Pi coVacc for use in humans.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. There are currently no SARS-CoV-2-specific treatments or vaccines available due to the novelty of the virus. Hence, rapid development of effective vaccines against SARS-CoV-2 are urgently needed. Here we developed a pilot-scale production of a purified inactivated SARS-CoV-2 virus vaccine candidate (PiCoVacc), which induced SARS-CoV-2-specific neutralizing antibodies in mice, rats and non-human primates. These antibodies neutralized 10 representative SARS-CoV-2 strains, suggesting a possible broader neutralizing ability against SARS-CoV-2 strains. Three immunizations using two different doses (3 μg or 6 μg per dose) provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without observable antibody-dependent enhancement of infection. These data support clinical development of SARS-CoV-2 vaccines for humans.

Journal ArticleDOI
TL;DR: It is shown that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians.
Abstract: The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order. Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits1. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the ‘curse of dimensionality’ commonly encountered in machine learning2. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks3, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries4,5, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo6,7.

Journal ArticleDOI
TL;DR: The European Association of Urology (EAU) Guidelines Panel on Upper Urinary Tract Urothelial Carcinoma (UTUC) as mentioned in this paper provided updated guidelines to aid clinicians in the current evidence-based management of UTUC and to incorporate recommendations into clinical practice.

Proceedings ArticleDOI
01 Jul 2017
TL;DR: This work proposes a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes, and significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency.
Abstract: Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.


Journal ArticleDOI
21 Sep 2018-Science
TL;DR: Recent progress in addressing stability, how to allow mass production, and how to maintain uniformity of large-area films are reviewed, and the remaining challenges along the pathway to their commercialization are discussed.
Abstract: BACKGROUND Perovskite solar cells (PSCs) have attracted intensive attention because of their ever-increasing power conversion effi­ciency (PCE), low-cost materials constituents, and simple solution fabrication process. Initi­ated in 2009 with an efficiency of 3.8%, PSCs have now achieved a lab-scale power conversion efficiency of 23.3%, rivaling the performance of commercial multicrystalline silicon solar cells, as well as copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) thin-film solar cells. Thousands of articles re­lated to PSCs have been published each year since 2015, highlighting PSCs as a topic of in­tense interest in photovoltaics (PV) research. With high efficiencies achieved in lab devices, stability and remaining challenges in upscal­ing the manufacture of PSCs are two critical concerns that must be addressed on the path to PSC commercialization. ADVANCES We review recent progress in PSCs and discuss the remaining challenges along the pathway to their commercialization. Device configurations of PSCs (see the figure) include mesoscopic formal (n-i-p) and inverted (p-i-n) structures, planar formal and inverted struc­tures, and the printable triple mesoscopic structures. PCEs of devices that use these structures have advanced rapidly in the case of small-area devices (~0.1 cm 2 ). PSCs are also attracting attention as top cells for the construction of tandem solar cells with existing mature PV technologies to increase efficiency beyond the Shockley-Queisser limit of single-junction devices. The stability of PSCs has attracted much well-deserved attention of late, and notable progress has been made in the past few years. PSCs have recently achieved exhibited life­times of 10,000 hours under 1 sun (1 kW/m 2 ) illumina­tion with an ultraviolet filter at a stabilized temperature of 55°C and at short-circuit conditions for a printable triple mesoscopic PSCs. This irradiation is equivalent to the total irradiation of 10 years of outdoor use in most of Europe. However, within the PSC community, standard testing protocols require further development. In addition, transpar­ency in reporting standards on stability tests needs to be improved; this can be achieved by providing both initial photovoltaic performance and normalization parameters. The upscaling of PSCs has also progressed steadily, leading to PSC mini-modules, standard-sized modules, and power systems. PV companies have set out to manufacture large-area PSC modules (see the figure), and a 110-m 2 perovskite PV system with screen-printed triple mesoscopic PSC modules was recently debuted. Studies of these increased-area modules and systems will promote the development of PSCs toward commercializa­tion. PSC research is expanding to cover fundamental topics on materials and lab-sized cells, as well as to address issues of in­dustrial-scale manufacturing and deployment. OUTLOOK The PV market has been continu­ously expanding in recent years, bringing op­portunities for new PV technologies of which PSCs are promising candidates. It is impera­tive to achieve a low cost per watt, which means that both efficiency and lifetime need improve­ment relative to current parameters. The efficiency gap between lab cells and industrial modules has seen impressive reduc­tions in crystalline silicon; PSCs must simi­larly enlarge module areas to the panel level and need to achieve lifetimes comparable to those of legacy PV technologies. Other improvements will need to include industry-scale electronic-grade films, recycling methods to address concerns regarding lead toxicity, and the adoption of standardized testing protocols to predict the operation lifetime of PSCs. Modules will need to endure light-induced degradation, potential-induced degradation, partial-shade stress, and mechanical shock. The field can benefit from lessons learned during the development of mature PV technologies as it strives to de­fine, and overcome, the hurdles to PSC com­mercial impact.

Journal ArticleDOI
TL;DR: GetOrganelle assemblies are more accurate than published and/or NOVOPlasty-reassembled plastomes as assessed by mapping and are able to reassemble the circular Plastomes from 47 datasets using GetOrganelle.
Abstract: GetOrganelle is a state-of-the-art toolkit to accurately assemble organelle genomes from whole genome sequencing data. It recruits organelle-associated reads using a modified “baiting and iterative mapping” approach, conducts de novo assembly, filters and disentangles the assembly graph, and produces all possible configurations of circular organelle genomes. For 50 published plant datasets, we are able to reassemble the circular plastomes from 47 datasets using GetOrganelle. GetOrganelle assemblies are more accurate than published and/or NOVOPlasty-reassembled plastomes as assessed by mapping. We also assemble complete mitochondrial genomes using GetOrganelle. GetOrganelle is freely released under a GPL-3 license ( https://github.com/Kinggerm/GetOrganelle ).

Journal ArticleDOI
TL;DR: The fundamental scientific principle, structure, and possible classification of Battery‐supercapacitor hybrid device (BSH) are addressed, and the recent advances on various existing and emerging BSHs are reviewed, with the focus on materials and electrochemical performances.
Abstract: Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery-supercapacitor hybrid device (BSH) is typically constructed with a high-capacity battery-type electrode and a high-rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li-/Na-ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed.

Journal ArticleDOI
TL;DR: Current data about the structure and functions of bone cells and the factors that influence bone remodeling are discussed, indicating the dynamic nature of bone tissue.
Abstract: Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

Proceedings ArticleDOI
07 Dec 2015
TL;DR: In this paper, a spatial regularization component is introduced in the learning to penalize correlation filter coefficients depending on their spatial location, which allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples.
Abstract: Robust and accurate visual tracking is one of the most challenging computer vision problems. Due to the inherent lack of training data, a robust approach for constructing a target appearance model is crucial. Recently, discriminatively learned correlation filters (DCF) have been successfully applied to address this problem for tracking. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier on all patches in the target neighborhood. However, the periodic assumption also introduces unwanted boundary effects, which severely degrade the quality of the tracking model. We propose Spatially Regularized Discriminative Correlation Filters (SRDCF) for tracking. A spatial regularization component is introduced in the learning to penalize correlation filter coefficients depending on their spatial location. Our SRDCF formulation allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples. We further propose an optimization strategy, based on the iterative Gauss-Seidel method, for efficient online learning of our SRDCF. Experiments are performed on four benchmark datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014. Our approach achieves state-of-the-art results on all four datasets. On OTB-2013 and OTB-2015, we obtain an absolute gain of 8.0% and 8.2% respectively, in mean overlap precision, compared to the best existing trackers.

Posted Content
TL;DR: This work demonstrates the effectiveness of the Information-Plane visualization of DNNs and shows that the training time is dramatically reduced when adding more hidden layers, and the main advantage of the hidden layers is computational.
Abstract: Despite their great success, there is still no comprehensive theoretical understanding of learning with Deep Neural Networks (DNNs) or their inner organization. Previous work proposed to analyze DNNs in the \textit{Information Plane}; i.e., the plane of the Mutual Information values that each layer preserves on the input and output variables. They suggested that the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer. In this work we follow up on this idea and demonstrate the effectiveness of the Information-Plane visualization of DNNs. Our main results are: (i) most of the training epochs in standard DL are spent on {\emph compression} of the input to efficient representation and not on fitting the training labels. (ii) The representation compression phase begins when the training errors becomes small and the Stochastic Gradient Decent (SGD) epochs change from a fast drift to smaller training error into a stochastic relaxation, or random diffusion, constrained by the training error value. (iii) The converged layers lie on or very close to the Information Bottleneck (IB) theoretical bound, and the maps from the input to any hidden layer and from this hidden layer to the output satisfy the IB self-consistent equations. This generalization through noise mechanism is unique to Deep Neural Networks and absent in one layer networks. (iv) The training time is dramatically reduced when adding more hidden layers. Thus the main advantage of the hidden layers is computational. This can be explained by the reduced relaxation time, as this it scales super-linearly (exponentially for simple diffusion) with the information compression from the previous layer.

Journal ArticleDOI
TL;DR: The ARRIVE guidelines have been implemented in BJP for 4 years with the aim of increasing transparency in reporting experiments involving animals but BJP has assessed its success in implementing them and concluded that it could do better.
Abstract: The ARRIVE guidelines have been implemented in BJP for 4 years with the aim of increasing transparency in reporting experiments involving animals. BJP has assessed our success in implementing them and concluded that we could do better. This editorial discusses the issues and explains how we are changing our requirements for authors to report their findings in experiments involving animals. This is one of a series of editorials discussing updates to the BJP Instructions to Authors

Proceedings ArticleDOI
17 Aug 2015
TL;DR: SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems.
Abstract: This paper presents the design and implementation of SpotFi, an accurate indoor localization system that can be deployed on commodity WiFi infrastructure. SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems. SpotFi makes two key technical contributions. First, SpotFi incorporates super-resolution algorithms that can accurately compute the angle of arrival (AoA) of multipath components even when the access point (AP) has only three antennas. Second, it incorporates novel filtering and estimation techniques to identify AoA of direct path between the localization target and AP by assigning values for each path depending on how likely the particular path is the direct path. Our experiments in a multipath rich indoor environment show that SpotFi achieves a median accuracy of 40 cm and is robust to indoor hindrances such as obstacles and multipath.

Journal ArticleDOI
TL;DR: In this paper, all-dielectric Huygens' metasurfaces are demonstrated for NIR frequencies using arrays of silicon nanodisks as metaatoms.
Abstract: Optical metasurfaces have developed as a breakthrough concept for advanced wave-front engineering enabled by subwavelength resonant nanostructures. However, reflection and/or absorption losses as well as low polarization-conversion efficiencies pose a fundamental obstacle for achieving high transmission efficiencies that are required for practical applications. Here, for the first time to our knowledge, highly efficient all-dielectric metasurfaces are demonstrated for NIR frequencies using arrays of silicon nanodisks as metaatoms. The main features of Huygens' sources are employed, namely, spectrally overlapping crossed electric and magnetic dipole resonances of equal strength, to demonstrate Huygens' surfaces with full transmission-phase coverage of 360° and near-unity transmission. Full-phase coverage combined with high efficiency in transmission are experimentally confirmed. Based on these key properties, all-dielectric Huygens' metasurfaces can become a new paradigm for flat optical devices, including beam-steering, beam-shaping, and focusing, as well as holography and dispersion control.

Journal ArticleDOI
TL;DR: This review collates internationally generated information on metabolic syndrome, its many definitions and its associations with life‐threatening conditions including type 2 diabetes mellitus, cardiovascular disease and cancer, providing a foundation for future advancements on this topic.
Abstract: Summary Obesity is reaching epidemic proportions with recent worldwide figures estimated at 1.4 billion and rising year-on-year. Obesity affects all socioeconomic backgrounds and ethnicities and is a pre-requisite for metabolic syndrome. Metabolic syndrome is a clustering of risk factors, such as central obesity, insulin resistance, dyslipidaemia and hypertension that together culminate in the increased risk of type 2 diabetes mellitus and cardiovascular disease. As these conditions are among the leading causes of deaths worldwide and metabolic syndrome increases the risk of type 2 diabetes mellitus fivefold and cardiovascular disease threefold, it is of critical importance that a precise definition is agreed upon by all interested parties. Also of particular interest is the relationship between metabolic syndrome and cancer. Metabolic syndrome has been associated with a plethora of cancers including breast, pancreatic, colon and liver cancer. Furthermore, each individual risk factor for metabolic syndrome has also an association with cancer. Our review collates internationally generated information on metabolic syndrome, its many definitions and its associations with life-threatening conditions including type 2 diabetes mellitus, cardiovascular disease and cancer, providing a foundation for future advancements on this topic.

Journal ArticleDOI
TL;DR: In this trial, minimally invasive radical hysterectomy was associated with lower rates of disease‐free survival and overall survival than open abdominal radical hysteresis among women with early‐stage cervical cancer.
Abstract: Background There are limited data from retrospective studies regarding whether survival outcomes after laparoscopic or robot-assisted radical hysterectomy (minimally invasive surgery) are ...

Journal ArticleDOI
TL;DR: A basic standard acoustic parameter set for various areas of automatic voice analysis, such as paralinguistic or clinical speech analysis, is proposed and intended to provide a common baseline for evaluation of future research and eliminate differences caused by varying parameter sets or even different implementations of the same parameters.
Abstract: Work on voice sciences over recent decades has led to a proliferation of acoustic parameters that are used quite selectively and are not always extracted in a similar fashion. With many independent teams working in different research areas, shared standards become an essential safeguard to ensure compliance with state-of-the-art methods allowing appropriate comparison of results across studies and potential integration and combination of extraction and recognition systems. In this paper we propose a basic standard acoustic parameter set for various areas of automatic voice analysis, such as paralinguistic or clinical speech analysis. In contrast to a large brute-force parameter set, we present a minimalistic set of voice parameters here. These were selected based on a) their potential to index affective physiological changes in voice production, b) their proven value in former studies as well as their automatic extractability, and c) their theoretical significance. The set is intended to provide a common baseline for evaluation of future research and eliminate differences caused by varying parameter sets or even different implementations of the same parameters. Our implementation is publicly available with the openSMILE toolkit. Comparative evaluations of the proposed feature set and large baseline feature sets of INTERSPEECH challenges show a high performance of the proposed set in relation to its size.