scispace - formally typeset
Search or ask a question

Showing papers on "Atmospheric methane published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions.
Abstract: Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain. © 2013 Macmillan Publishers Limited.

1,668 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980.
Abstract: . We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6%) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the change in global mean tropospheric CO and NOx burdens (ΔCO/ΔNOx, approximately represents changes in OH sinks versus changes in OH sources) in the models, pointing to a need for better constraints on natural precursor emissions and on the chemical mechanisms in the current generation of chemistry-climate models. For the 1980 to 2000 period, we find that climate warming and a slight increase in mean OH (3.5 ± 2.2%) leads to a 4.3 ± 1.9% decrease in the methane lifetime. Analysing sensitivity simulations performed by 10 models, we find that preindustrial to present-day climate change decreased the methane lifetime by about four months, representing a negative feedback on the climate system. Further, we analysed attribution experiments performed by a subset of models relative to 2000 conditions with only one precursor at a time set to 1860 levels. We find that global mean OH increased by 46.4 ± 12.2% in response to preindustrial to present-day anthropogenic NOx emission increases, and decreased by 17.3 ± 2.3%, 7.6 ± 1.5%, and 3.1 ± 3.0% due to methane burden, and anthropogenic CO, and NMVOC emissions increases, respectively.

274 citations


Journal ArticleDOI
TL;DR: Ebullition (bubbling) from small lakes and ponds at high latitudes is an important yet unconstrained source of atmospheric methane (CH4) Small water bodies are most abundant in permanently frozen.
Abstract: Ebullition (bubbling) from small lakes and ponds at high latitudes is an important yet unconstrained source of atmospheric methane (CH4) Small water bodies are most abundant in permanently frozen

147 citations


Journal ArticleDOI
18 Oct 2013-Science
TL;DR: From in situ measurements made with the Tunable Laser Spectrometer on Curiosity using a distinctive spectral pattern specific to methane, no detection of atmospheric methane is reported, which reduces the probability of current methanogenic microbial activity on Mars and limits the recent contribution from extraplanetary and geologic sources.
Abstract: By analogy with Earth, methane in the Martian atmosphere is a potential signature of ongoing or past biological activity. During the past decade, Earth-based telescopic observations reported “plumes” of methane of tens of parts per billion by volume (ppbv), and those from Mars orbit showed localized patches, prompting speculation of sources from subsurface bacteria or nonbiological sources. From in situ measurements made with the Tunable Laser Spectrometer (TLS) on Curiosity using a distinctive spectral pattern specific to methane, we report no detection of atmospheric methane with a measured value of 0.18 ± 0.67 ppbv corresponding to an upper limit of only 1.3 ppbv (95% confidence level), which reduces the probability of current methanogenic microbial activity on Mars and limits the recent contribution from extraplanetary and geologic sources.

112 citations


Journal ArticleDOI
TL;DR: In this paper, an ensemble Kalman filter (EnKF) was used to estimate regional monthly methane fluxes for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) surface mole fraction measurements.
Abstract: . We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH4 measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH4 measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r2) increasing by a mean of 0.04 (range: −0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: −8.9 to 8.4 ppb).

100 citations


Journal ArticleDOI
22 Nov 2013-Science
TL;DR: High-resolution, high-precision ice core methane concentration records from Greenland and Antarctica are presented and used to construct a high-resolution record of the methane inter-polar difference (IPD), showing that LPIH emissions increased primarily in the tropics, with secondary increases in the subtropical Northern Hemisphere.
Abstract: The origin of the late preindustrial Holocene (LPIH) increase in atmospheric methane concentrations has been much debated. Hypotheses invoking changes in solely anthropogenic sources or solely natural sources have been proposed to explain the increase in concentrations. Here two high-resolution, high-precision ice core methane concentration records from Greenland and Antarctica are presented and are used to construct a high-resolution record of the methane inter-polar difference (IPD). The IPD record constrains the latitudinal distribution of emissions and shows that LPIH emissions increased primarily in the tropics, with secondary increases in the subtropical Northern Hemisphere. Anthropogenic and natural sources have different latitudinal characteristics, which are exploited to demonstrate that both anthropogenic and natural sources are needed to explain LPIH changes in methane concentration.

84 citations


Journal ArticleDOI
TL;DR: It is shown that microbial (community diversity and function) response to land use change is stable over time, providing support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles.
Abstract: Microbes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios Using functional measures, stable-isotope probing, and molecular methods, we show that microbial (community diversity and function) response to land use change is stable over time We investigated the change in net methane flux and associated microbial communities due to afforestation of bog, grassland, and moorland Afforestation resulted in the stable and consistent enhancement in sink of atmospheric methane at all sites This change in function was linked to a niche-specific separation of microbial communities (methanotrophs) The results suggest that ecological theories developed for macroecology may explain the microbial regulation of the methane cycle Our findings provide support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles

82 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries and estimated that global soils consumed 32-36 Tg CH4 yr−1 during the 1990s.
Abstract: [1] Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

80 citations


Journal ArticleDOI
TL;DR: This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms and finds abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels.
Abstract: Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5-15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and call for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters.

79 citations


DOI
19 Mar 2013
TL;DR: In this paper, the Clathrate Gun Hypothesis was proposed to explain the abrupt increase in atmospheric methane recorded in polar ice cores, not from ocean floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data.
Abstract: The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

79 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a new ultra-high resolution record of atmospheric methane variability over the last 1800 years obtained from continuous analysis of a shallow ice core from the North Greenland Eemian project (NEEM-2011-S1) during a 4-week laboratory-based measurement campaign.

Journal ArticleDOI
TL;DR: High atmospheric concentrations of methane may be produced by serpentinization for habitable planets around Sun-like stars with N2-CO2 atmospheres, while methane concentrations larger than 10 ppmv may indicate the presence of life.
Abstract: On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this co...

Journal ArticleDOI
TL;DR: In this paper, the authors investigate ocean warming as a possible cause for present-day and likely future dissociation of hydrate, within 350-800 mwd, west of Svalbard.
Abstract: Methane is a potent greenhouse gas and large-scale rapid release of methane from hydrate may have contributed to past abrupt climate change inferred from the geological record. The discovery in 2008 of over 250 plumes of methane gas escaping from the seabed of the West Svalbard continental margin at ~400 m water depth (mwd) suggests that hydrate is dissociating in the present-day Arctic. Here we model the dynamic response of hydrate-bearing sediments over a period of 2300 years and investigate ocean warming as a possible cause for present-day and likely future dissociation of hydrate, within 350–800 mwd, west of Svalbard. Future temperatures are given by two climate models, HadGEM2 and CCSM4, and scenarios, Representative Concentration Pathways (RCPs) 8.5 and 2.6. Our results suggest that over the next three centuries 5.3–29 Gg yr−1 of methane may be released to the Arctic Ocean on the West Svalbard margin.

Journal ArticleDOI
TL;DR: In this article, two atmospheric inversions (one fine-resolved and one process-discriminating) and a process-based model for land surface exchanges are brought together to analyse the variations of methane emissions from 1990 to 2009.
Abstract: Two atmospheric inversions (one fine-resolved and one process-discriminating) and a process-based model for land surface exchanges are brought together to analyse the variations of methane emissions from 1990 to 2009. A focus is put on the role of natural wetlands and on the years 2000-2006, a period of stable atmospheric concentrations. From 1990 to 2000, the top-down and bottom-up visions agree on the time-phasing of global total and wetland emission anomalies. The process-discriminating inversion indicates that wetlands dominate the time-variability of methane emissions (90% of the total variability). The contribution of tropical wetlands to the anomalies is found to be large, especially during the post-Pinatubo years (global negative anomalies with minima between -41 and -19 Tg yr(-1) in 1992) and during the alternate 1997-1998 El-Nino/1998-1999 La-Nina (maximal anomalies in tropical regions between +16 and +22 Tg yr(-1) for the inversions and anomalies due to tropical wetlands between +12 and +17 Tg yr(-1) for the process-based model). Between 2000 and 2006, during the stagnation of methane concentrations in the atmosphere, the top-down and bottom-up approaches agree on the fact that South America is the main region contributing to anomalies in natural wetland emissions, but they disagree on the sign and magnitude of the flux trend in the Amazon basin. A negative trend (-3.9 +/- 1.3 Tg yr(-1)) is inferred by the process-discriminating inversion whereas a positive trend (+1.3 +/- 0.3 Tg yr(-1)) is found by the process model. Although processed-based models have their own caveats and may not take into account all processes, the positive trend found by the B-U approach is considered more likely because it is a robust feature of the process-based model, consistent with analysed precipitations and the satellite-derived extent of inundated areas. On the contrary, the surface-data based inversions lack constraints for South America. This result suggests the need for a re-interpretation of the large increase found in anthropogenic methane inventories after 2000.

01 Sep 2013
TL;DR: In this article, the authors proposed a land use and land cover change program (NNX09AI26G) for the United States National Aeronautics and Space Administration (NOAA).
Abstract: United States. National Aeronautics and Space Administration (Land Use and Land Cover Change program (NASA-NNX09AI26G)

Journal ArticleDOI
TL;DR: In this article, the authors measured the spatiotemporal distribution of dissolved methane in a medium-sized freshwater lake and found that the diffusive flux of methane to the atmosphere strongly varies with location in the lake.
Abstract: [1] Lakes have been identified as an important source of atmospheric methane. Here the spatiotemporal distribution of dissolved methane was measured in a medium-sized freshwater lake. The data reveal that littoral zones (nearshore, shallow) are the predominant source of methane. Offshore-directed gradients of dissolved methane suggest the transport of methane from the nearshore zone to the pelagic epilimnion. The distribution patterns of epilimnetic methane were highly heterogeneous, independent of the mean lake-wide methane concentration. Consequently, the diffusive flux of methane to the atmosphere strongly varies with location in the lake. A comparison of the diffusive methane flux from different offshore sampling stations indicates that single-point measurements are not necessarily sufficient to estimate lake-wide emissions to the atmosphere accurately. Thus, spatially resolved measurements of methane emissions are needed to improve the reliability of estimates of the methane that lakes contribute to the global methane budget.

Journal ArticleDOI
TL;DR: The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous flow analysis along a freshly drilled ice core in a field-based setting as mentioned in this paper.
Abstract: . The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.

Journal ArticleDOI
TL;DR: In this paper, changes in methane cycling over the past 160,000 years were assessed by measurements of the carbon isotopic composition 13 C of methane in Antarctic ice cores from Dronning Maud Land and Vostok.
Abstract: During the last glacial cycle, greenhouse gas concentrations fluctuated on decadal and longer timescales. Concentrations of methane, as measured in polar ice cores, show a close connection with Northern Hemisphere temperature variability, but the contribution of the various methane sources and sinks to changes in concentration is still a matter of debate. Here we assess changes in methane cycling over the past 160,000 years by measurements of the carbon isotopic composition 13 C of methane in Antarctic ice cores from Dronning Maud Land and Vostok. We find that variations in the 13 C of methane are not generally correlated with changes in atmospheric methane concentration, but instead more closely correlated to atmospheric CO2 concentrations. We interpret this to reflect a climatic and CO2-related control on the isotopic signature of methane source material, such as ecosystem shifts in the seasonally inundated tropical wetlands that produce methane. In contrast, relatively stable 13 C values occurred during intervals of large changes in the atmospheric loading of methane. We suggest that most methane sources—most notably tropical wetlands—must have responded simultaneously to climate changes across these periods.


Journal ArticleDOI
TL;DR: In this article, the authors show that peatland formation and peat accumulation in northern high-latitude regions increased more than threefold in the early Holocene in response to climate warming and the availability of new habitat as a result of deglaciation.
Abstract: [1] The major increase in atmospheric methane (CH4) concentration during the last glacial-interglacial transition provides a useful example for understanding the interactions and feedbacks among Earth's climate, biosphere carbon cycling, and atmospheric chemistry. However, the causes of CH4 doubling during the last deglaciation are still uncertain and debated. Although the ice-core data consistently suggest a dominant contribution from northern high-latitude wetlands in the early Holocene, identifying the actual sources from the ground-based data has been elusive. Here we present data syntheses and a case study from Alaska to demonstrate the importance of northern wetlands in contributing to high atmospheric CH4 concentration in the early Holocene. Our data indicate that new peatland formation as well as peat accumulation in northern high-latitude regions increased more than threefold in the early Holocene in response to climate warming and the availability of new habitat as a result of deglaciation. Furthermore, we show that marshes and wet fens that represent early stages of wetland succession were likely more widespread in the early Holocene. These wetlands are associated with high CH4 emissions due to high primary productivity and the presence of emergent plant species that facilitate CH4 transport to the atmosphere. We argue that early wetland succession and rapid peat accumulation and expansion (not simply initiation) contributed to high CH4 emissions from northern regions, potentially contributing to the sharp rise in atmospheric CH4 at the onset of the Holocene.

Journal ArticleDOI
TL;DR: In this article, the distribution and exchange fluxes of methane (CH4) were measured in a mangrove vegetated island and its bordering estuarine system of the Sundarbans biosphere from June 2010 to December 2011 on monthly basis.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a statistical model of CH4 emissions using an artificial neural network (ANN) approach and field observations, which were then extrapolated to the northern high latitudes to estimate monthly emissions from 1990 to 2009.
Abstract: Methane (CH4) emissions from wetland ecosystems in nothern high latitudes provide a potentially positive feedback to global climate warming. Large uncertainties still remain in estimating wetland CH4 emisions at regional scales. Here we develop a statistical model of CH4 emissions using an artificial neural network (ANN) approach and field observations of CH4 fluxes. Six explanatory variables (air temperature, precipitation, water table depth, soil organic carbon, soil total porosity, and soil pH) are included in the development of ANN models, which are then extrapolated to the northern high latitudes to estimate monthly CH4 emissions from 1990 to 2009. We estimate that the annual wetland CH4 source from the northern high latitudes (north of 45 degrees N) is 48.7 (4) yr(-1) (1 (12)g) with an uncertainty range of 44.0 similar to 53.7 (4) yr(-1). (4) emissions show a large spatial variability over the northern high latitudes, due to variations in hydrology, climate, and soil conditions. Significant interannual and seasonal variations of wetland CH4 emissions exist in the past 2 decades, and the emissions in this period are most sensitive to variations in water table position. (4) dynamics in this region, research priorities should be directed to better characterizing hydrological processes of wetlands, including temporal dynamics of water table position and spatial dynamics of wetland areas.

Journal ArticleDOI
TL;DR: In this article, the authors measured the abundance and geochemical behaviour of gaseous methane in the unsaturated zone of karst terrains of Gibraltar and reported that the concentrations and δ 13 C of methane in background atmosphere, soil air and cave air collected at monthly intervals over a 4-yr period are reported for St. Michaels Cave, Gibraltar, where the regional climate, surface and cave processes are well documented.

Journal ArticleDOI
TL;DR: In this article, the authors measured CH4 emissions from two shallow polymictic lakes in southern Brazil and evaluated the roles of temperature and trophic level in increasing these emissions.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Aura Tropospheric Emission Sounder (TES) satellite instrument to place constraints on the role of tropical fire emissions versus microbial production during the 2006 El Nino, a time of significant fire emissions from Indonesia.
Abstract: . Tropical fires represent a highly uncertain source of atmospheric methane (CH4) because of the variability of fire emissions and the dependency of the fire CH4 emission factors (g kg−1 dry matter burned) on fuel type and combustion phase. In this paper we use new observations of CH4 and CO in the free troposphere from the Aura Tropospheric Emission Sounder (TES) satellite instrument to place constraints on the role of tropical fire emissions versus microbial production (e.g. in wetlands and livestock) during the (October) 2006 El Nino, a time of significant fire emissions from Indonesia. We first compare the global CH4 distributions from TES using the GEOS-Chem model. We find a mean bias between the observations and model of 26.3 ppb CH4 that is independent of latitude between 50° S and 80° N, consistent with previous validation studies of TES CH4 retrievals using aircraft measurements. The slope of the distribution of CH4 versus CO as observed by TES and modeled by GEOS-Chem is consistent (within the TES observation error) for air parcels over the Indonesian peat fires, South America, and Africa. The CH4 and CO distributions are correlated between R = 0.42 and R = 0.46, with these correlations primarily limited by the TES random error. Over Indonesia, the observed slope of 0.13 (ppb ppb−1) ±0.01, as compared to a modeled slope of 0.153 (ppb ppb−1) ±0.005 and an emission ratio used within the GEOS-Chem model of approximately 0.11 (ppb ppb−1), indicates that most of the observed methane enhancement originated from the fire. Slopes of 0.47 (ppb ppb−1) ±0.04 and 0.44 (ppb ppb−1) ±0.03 over South America and Africa show that the methane in the observed air parcels primarily came from microbial-generated emissions. Sensitivity studies using GEOS-Chem show that part of the observed correlation for the Indonesian observations and most of the observed correlations over South America and Africa are a result of transport and mixing of the fire and nearby microbial-generated emissions into the observed air parcels. Differences between observed and modeled CH4 distributions over South America and southern Africa indicate that the magnitude of the methane emissions for this time period are inconsistent with observations even if the relative distribution of fire versus biotic emissions are consistent. This study shows the potential for estimation of CH4 emissions over tropical regions using joint satellite observations of CH4 and CO.

Journal ArticleDOI
01 Jun 2013-Icarus
TL;DR: In this article, the authors report that methane produced in hypersaline environments on Earth has an isotopic composition and alkane content outside the values presently considered to indicate a biogenic origin.

Journal ArticleDOI
TL;DR: It is demonstrated here for the first time that viable methanotrophic bacteria are present in air and rain and knowledge on the global distribution of methanOTrophs is expanded to include the atmosphere, leading to an important possible effect of these organisms.
Abstract: Atmospheric methane is degraded by both photooxidation and, in topsoils, by methanotrophic bacteria, but this may not totally account for the global sink of this greenhouse gas. Topsoils are a prominent source of airborne bacteria, which can degrade some organic atmospheric compounds at rates similar to photooxidation. Although airborne methanotrophs would have direct access to atmospheric methane, their presence and activity in the atmosphere has not been investigated so far. We enriched airborne methanotrophs from air and rainwater and showed that they oxidized methane at atmospheric concentration. The majority of seven OTUs, detected using pmoA gene clone libraries, were affiliated to the type II methanotrophic genera Methylocystis and Methylosinus. Furthermore, 16S rRNA gene clone libraries revealed the presence of OTUs affiliated with the genera Hyphomicrobium and Variovorax, members of which can stimulate methane oxidation by yet unidentified mechanisms. Simulating cloud-like conditions revealed that although both low pH and the presence of common cloud-borne organics negatively affected methane oxidation, airborne methanotrophs were able to degrade atmospheric methane in most cases. We demonstrate here for the first time that viable methanotrophic bacteria are present in air and rain and thus expand our knowledge on the global distribution of methanotrophs to include the atmosphere. The fact that they can degrade methane to below atmospheric concentrations when inoculated into artificial cloud water leads to an important possible effect of these organisms: the atmosphere may not only function as a medium for microbial dissemination, but also as a site of active microbial methane turnover.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the relationship between spaceborne synthetic aperture radar (SAR) pixel values of lake ice and biogeochemical field measurements of CH4 ebullition on ten lakes on the northern Seward Peninsula.
Abstract: Thermokarst lakes, formed by permafrost thaw, are an important source of atmospheric methane (CH4), a powerful greenhouse gas. Ebullition (bubbling) is often the dominant mode of lake CH4 emission. Because extrapolating spatially limited field measurements of CH4 ebullition induces large uncertainties in regional emission estimates, there is a need for remote sensing based approaches to detect and quantify CH4 ebullition at larger spatial scales in lakes. We examined the relationship between spaceborne synthetic aperture radar (SAR) pixel values of lake ice and biogeochemical field measurements of CH4 ebullition on ten lakes on the northern Seward Peninsula. Among lakes, ebullition ranged from low to high. We found that both the area of ice-bound ebullition-bubble clusters and the bubbling rates that generated the clusters were correlated with L-band single-polarized (HH) SAR (R2 = 0.70, p = 0.002, n = 10) and with the “roughness” component of a Pauli decomposition of L-band quad-polarized SAR (R2 = 0.77,...

Journal ArticleDOI
TL;DR: In this paper, the contribution of entrapped gas bubbles to the soil methane (CH4) pool and their role in CH4 emissions in rice paddies open to the atmosphere was investigated.
Abstract: We attempted to determine the contribution of entrapped gas bubbles to the soil methane (CH4) pool and their role in CH4 emissions in rice paddies open to the atmosphere. We buried pots with soil and rice in four treatments comprising two atmospheric CO2 concentrations (ambient and ambient +200 μmol mol−1) and two soil temperatures (ambient and ambient +2 °C). Pots were retrieved for destructive measurements of rice growth and the gaseous CH4 pool in the soil at three stages of crop development: panicle formation, heading, and grain filling. Methane flux was measured before pot retrieval. Bubbles that contained CH4 accounted for a substantial fraction of the total CH4 pool in the soil: 26–45 % at panicle formation and 60–68 % at the heading and grain filling stages. At panicle formation, a higher CH4 mixing ratio in the bubbles was accompanied by a greater volume of bubbles, but at heading and grain filling, the volume of bubbles plateaued and contained ~35 % CH4. The bubble-borne CH4 pool was closely related to the putative rice-mediated CH4 emissions measured at each stage across the CO2 concentration and temperature treatments. However, much unexplained variation remained between the different growth stages, presumably because the CH4 transport capacity of rice plants also affected the emission rate. The gas phase needs to be considered for accurate quantification of the soil CH4 pool. Not only ebullition but also plant-mediated emission depends on the gaseous-CH4 pool and the transport capacity of the rice plants.