scispace - formally typeset
Search or ask a question

Showing papers on "Cosmology published in 2018"


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations


Journal ArticleDOI
TL;DR: In this paper, the cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1), were presented.
Abstract: We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457×457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S8≡σ8(Ωm/0.3)0.5=0.773-0.020+0.026 and Ωm=0.267-0.017+0.030 for ΛCDM; for wCDM, we find S8=0.782-0.024+0.036, Ωm=0.284-0.030+0.033, and w=-0.82-0.20+0.21 at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S8 and Ωm are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S8=0.802±0.012 and Ωm=0.298±0.007 in ΛCDM and w=-1.00-0.04+0.05 in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.

1,201 citations


Journal ArticleDOI
TL;DR: In this paper, authors review theories of dark matter beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe.

659 citations


Journal ArticleDOI
TL;DR: In this article, the authors review early universe sources that can lead to cosmological backgrounds of GWs and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA.
Abstract: Gravitational waves (GWs) have a great potential to probe cosmology. We review early universe sources that can lead to cosmological backgrounds of GWs. We begin by presenting proper definitions of GWs in flat space-time and in a cosmological setting (section 2). Following, we discuss the reasons why early universe GW backgrounds are of a stochastic nature, and describe the general properties of a stochastic background (section 3). We recap current observational constraints on stochastic backgrounds, and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA (section 4). We then review in detail early universe GW generation mechanisms, as well as the properties of the GW backgrounds they give rise to. We classify the backgrounds in five categories: GWs from quantum vacuum fluctuations during standard slow-roll inflation (section 5), GWs from processes that operate within extensions of the standard inflationary paradigm (section 6), GWs from post-inflationary preheating and related non-perturbative phenomena (section 7), GWs from first order phase transitions related or not to the electroweak symmetry breaking (section 8), and GWs from general topological defects, and from cosmic strings in particular (section 9). The phenomenology of these early universe processes is extremely rich, and some of the GW backgrounds they generate can be within the reach of near-future GW detectors. A future detection of any of these backgrounds will provide crucial information on the underlying high energy theory describing the early universe, probing energy scales well beyond the reach of particle accelerators.

643 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide a broader historical perspective on the observational discoveries and theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.
Abstract: Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into an anecdotal account focused around the work of a few pioneering scientists. The aim of this review is to provide a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

627 citations


Journal ArticleDOI
TL;DR: In this paper, the authors study constraints imposed by two proposed string Swampland criteria on cosmology and find that inflationary models are generically in tension with these two criteria, and they argue that the universe will undergo a phase transition within a few Hubble times.

573 citations


Journal ArticleDOI
Michael Troxel, N. MacCrann1, N. MacCrann2, Joe Zuntz, Tim Eifler, Elisabeth Krause, Scott Dodelson, Daniel Gruen, Jonathan Blazek, Oliver Friedrich3, S. Samuroff, J. Prat, L. F. Secco, C. L. Davis, Agnès Ferté, J. DeRose, A. Alarcon, Adam Amara, Eric J. Baxter, Matthew R. Becker, Gary Bernstein, Sarah Bridle, R. Cawthon, Chihway Chang, Ami Choi, J. De Vicente, Alex Drlica-Wagner, Jack Elvin-Poole, Joshua A. Frieman, M. Gatti, W. G. Hartley, K. Honscheid, Ben Hoyle, E. M. Huff, Dragan Huterer, Bhuvnesh Jain, Matt J. Jarvis, T. Kacprzak, D. Kirk, N. Kokron, C. Krawiec, O. Lahav, Andrew R. Liddle, John A. Peacock, Markus Rau, Alexandre Refregier, R. P. Rollins, E. Rozo, E. S. Rykoff, Carles Sanchez, I. Sevilla-Noarbe, Erin Sheldon, Albert Stebbins, T. N. Varga3, P. Vielzeuf, M. H.L.S. Wang, Risa H. Wechsler, B. Yanny, T. M. C. Abbott, Filipe B. Abdalla, S. Allam, J. Annis, Keith Bechtol, A. Benoit-Lévy4, E. Bertin4, David J. Brooks, E. Buckley-Geer, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, Martin Crocce, Carlos E. Cunha, C. B. D'Andrea2, C. B. D'Andrea1, L. N. da Costa, Darren L. DePoy, Shantanu Desai, H. T. Diehl, J. P. Dietrich, P. Doel, Enrique J. Fernández, B. Flaugher, Pablo Fosalba, Juan Garcia-Bellido, Enrique Gaztanaga, D. W. Gerdes, Tommaso Giannantonio, Daniel A. Goldstein, Robert A. Gruendl, J. Gschwend, G. Gutierrez, David J. James, Tesla E. Jeltema, Marvin Johnson, Michael D. Johnson, Steve Kent, Kyler Kuehn, S. E. Kuhlmann, N. Kuropatkin, Tianjun Li, Marcos Lima, Huan Lin, Marcio A. G. Maia, M. March, Jennifer L. Marshall, Paul Martini, Peter Melchior, Felipe Menanteau, Ramon Miquel, Joseph J. Mohr3, Eric H. Neilsen, Robert C. Nichol, Brian Nord, Don Petravick, A. A. Plazas, A. K. Romer, A. Roodman, Masao Sako, E. J. Sanchez, V. Scarpine, R. H. Schindler, Michael Schubnell, Mathew Smith, R. C. Smith, Marcelle Soares-Santos, Flavia Sobreira, E. Suchyta, M. E. C. Swanson, G. Tarle, Daniel Thomas, Douglas L. Tucker, Vinu Vikram, Alistair R. Walker, Jochen Weller3, Yanxi Zhang 
TL;DR: In this paper, a 3.5% fractional uncertainty on σ8(Ωm/0.3)0.5 = 0.782-0.33 at 68% C.L.
Abstract: We use 26×106 galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg2 of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the flat ΛCDM and the wCDM models, while also varying the neutrino mass density. These results are shown to be robust using two independent shape catalogs, two independent photo-z calibration methods, and two independent analysis pipelines in a blind analysis. We find a 3.5% fractional uncertainty on σ8(Ωm/0.3)0.5=0.782-0.027+0.027 at 68% C.L., which is a factor of 2.5 improvement over the fractional constraining power of our DES Science Verification results. In wCDM, we find a 4.8% fractional uncertainty on σ8(Ωm/0.3)0.5=0.777-0.038+0.036 and a dark energy equation-of-state w=-0.95-0.39+0.33. We find results that are consistent with previous cosmic shear constraints in σ8—Ωm, and we see no evidence for disagreement of our weak lensing data with data from the cosmic microwave background. Finally, we find no evidence preferring a wCDM model allowing w≠-1. We expect further significant improvements with subsequent years of DES data, which will more than triple the sky coverage of our shape catalogs and double the effective integrated exposure time per galaxy.

571 citations


Journal ArticleDOI
28 Feb 2018-Nature
TL;DR: The analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles.
Abstract: The large absorption of the 21-centimetre transition of hydrogen around redshift 20 is explained by radiation from the first stars, combined with excess cooling of the cosmic gas caused by baryon–dark matter scattering. As the first stars heated hydrogen in the early Universe, the 21-cm hyperfine line—an astronomical standard that represents the spin-flip transition in the ground state of atomic hydrogen—was altered, causing the hydrogen gas to absorb photons from the microwave background. This should produce an observable absorption signal at frequencies of less than 200 megahertz (MHz). Judd Bowman and colleagues report the observation of an absorption profile centred at a frequency of 78 MHz that is about 19 MHz wide and 0.5 kelvin deep. The profile is generally in line with expectations, although it is deeper than predicted. An accompanying paper by Rennan Barkana suggests that baryons were interacting with cold dark-matter particles in the early Universe, cooling the gas more than had been expected. The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars1,2,3,4. By observing this 21-centimetre signal—either its sky-averaged spectrum5 or maps of its fluctuations, obtained using radio interferometers6,7—we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum5 reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter8,9,10. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.

487 citations


Journal ArticleDOI
TL;DR: In this article, the formation and growth of galaxies over time is connected to the growth of the halos in which they form, and every galaxy forms within a dark matter halo.
Abstract: In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they f...

461 citations


Journal ArticleDOI
TL;DR: A comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress can be found in this article, where the authors present a concise, yet comprehensive overview.
Abstract: The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.

407 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and detailed study of dynamical systems applications to cosmological models focusing on the late-time behaviour of our Universe, and in particular on its accelerated expansion is presented.

Journal ArticleDOI
TL;DR: In this paper, a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg(2) of imaging data by the Kilo Degree Survey (KiDS-450) overlapping with two spectroscopic surveys: the 2dFLenS and the Baryon Oscillation Spectroscopic Survey (BOSS).
Abstract: We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg(2) of imaging data by the Kilo Degree Survey (KiDS-450) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of N-body simulations. We methodically analyse different combinations of the observables, finding that the galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude, while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction. The fully combined constraint on S-8 = sigma(8) root Omega(m)/0.3 = 0.742 +/- 0.035, which is an improvement by 20 per cent compared to KiDS alone, corresponds to a 2.6 sigma discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favoured in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the S-8 constraint in the extended cosmology compared to KiDS alone.

Journal ArticleDOI
15 May 2018-Nature
TL;DR: Spectroscopic observations of MACS1149-JD16, a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age, reveal that star formation began at a redshift of about 15, around 250 million years after the Big Bang.
Abstract: A fundamental quest of modern astronomy is to locate the earliest galaxies and study how they influenced the intergalactic medium a few hundred million years after the Big Bang1–3. The abundance of star-forming galaxies is known to decline4,5 from redshifts of about 6 to 10, but a key question is the extent of star formation at even earlier times, corresponding to the period when the first galaxies might have emerged. Here we report spectroscopic observations of MACS1149-JD16, a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age. We detect an emission line of doubly ionized oxygen at a redshift of 9.1096 ± 0.0006, with an uncertainty of one standard deviation. This precisely determined redshift indicates that the red rest-frame optical colour arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. Our results indicate that it may be possible to detect such early episodes of star formation in similar galaxies with future telescopes. Observation of the emission line of doubly ionized oxygen at a redshift of 9.1096 reveals that star formation began at a redshift of about 15, around 250 million years after the Big Bang.

Journal ArticleDOI
TL;DR: Colossus as discussed by the authors is a Python package for calculations related to cosmology, the large-scale structure (LSS) of matter in the universe, and the properties of dark matter halos.
Abstract: This paper introduces Colossus, a public, open-source python package for calculations related to cosmology, the large-scale structure (LSS) of matter in the universe, and the properties of dark matter halos. The code is designed to be fast and easy to use, with a coherent, well-documented user interface. The cosmology module implements Friedman–Lemaitre–Robertson–Walker cosmologies including curvature, relativistic species, and different dark energy equations of state, and provides fast computations of the linear matter power spectrum, variance, and correlation function. The LSS module is concerned with the properties of peaks in Gaussian random fields and halos in a statistical sense, including their peak height, peak curvature, halo bias, and mass function. The halo module deals with spherical overdensity radii and masses, density profiles, concentration, and the splashback radius. To facilitate the rapid exploration of these quantities, Colossus implements more than 40 different fitting functions from the literature. I discuss the core routines in detail, with particular emphasis on their accuracy. Colossus is available at bitbucket.org/bdiemer/colossus.

Journal ArticleDOI
TL;DR: A detailed overview of the cosmological surveys that will be carried out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable can be found in this article.
Abstract: We present a detailed overview of the cosmological surveys that will be carried out with Phase 1 of the Square Kilometre Array (SKA1), and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5,000 sqdeg; a wide and deep continuum galaxy and HI intensity mapping survey over 20,000 sqdeg from z = 0.35 - 3; and a deep, high-redshift HI intensity mapping survey over 100 sqdeg from z = 3 - 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to z ~ 3 with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to z = 6. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical surveys like LSST and Euclid, leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys, and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.

Journal ArticleDOI
27 Feb 2018-Nature
TL;DR: If a small fraction of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1–100 times the electron mass, then the data from the EDGES experiment can be explained while remaining consistent with all other observations.
Abstract: The dynamics of our Universe is strongly influenced by pervasive—albeit elusive—dark matter, with a total mass about five times the mass of all the baryons1,2. Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter5–9. Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction—less than one per cent—of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1–100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.

Journal ArticleDOI
TL;DR: In this paper, the tomographic cosmic shear signal in Kilo Degree Survey (KiDS) data was combined with the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies.
Abstract: We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ˜450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S_8≡ σ _8 √{Ω _m/0.3}=0.800_{-0.027}^{+0.029}, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalising over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28% in the error. The combination of probes results in a 26% reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of two better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.

Journal ArticleDOI
04 Jan 2018-Nature
TL;DR: Observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark- Matter haloes that should exist in the Universe at this epoch.
Abstract: According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly-the first few hundred million years of the Universe-is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate whether the tension between the value of the Hubble constant, H0, inferred from local distance indicators and the angular scale of fluctuations in the Cosmic Microwave Background (CMB) is significant enough to warrant new physics in the form of modifying or adding energy components to the standard cosmological model.
Abstract: The Λ Cold Dark Matter model (ΛCDM) represents the current standard model in cosmology. Within this, there is a tension between the value of the Hubble constant, H0, inferred from local distance indicators and the angular scale of fluctuations in the Cosmic Microwave Background (CMB). In terms of Bayseian evidence, we investigate whether the tension is significant enough to warrant new physics in the form of modifying or adding energy components to the standard cosmological model. We find that late time dark energy explanations are not favoured by data whereas a pre-CMB decoupling extra dark energy component has a positive, although not substantial, Bayesian evidence. A constant equation of state of the additional early energy density is constrained to 0.086+0.04−0.03. Although this value deviates significantly from 1/3, valid for dark radiation, the latter is favoured based on the Bayesian evidence. If the tension persists, future estimates of H0 at the 1% level will be able to decisively determine which of the proposed explanations is favoured.

Journal ArticleDOI
TL;DR: The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe as discussed by the authors.
Abstract: The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.

Journal ArticleDOI
TL;DR: Weak gravitational lensing, the deflection of light by mass, is one of the best tools to constrain the growth of cosmic structure with time and reveal the nature of dark energy as mentioned in this paper.
Abstract: Weak gravitational lensing, the deflection of light by mass, is one of the best tools to constrain the growth of cosmic structure with time and reveal the nature of dark energy. I discuss the sourc...

Journal ArticleDOI
TL;DR: In this paper, the effect of thermodynamics on the spectrum of primordial gravitational waves was investigated by numerically solving the evolution equation of tensor perturbations in the expanding universe, and it was shown that the effects of free-streaming photons and neutrinos gave rise to some additional damping features overlooked in previous studies.
Abstract: In this paper, we revisit the estimation of the spectrum of primordial gravitational waves originated from inflation, particularly focusing on the effect of thermodynamics in the Standard Model of particle physics. By collecting recent results of perturbative and non-perturbative analysis of thermodynamic quantities in the Standard Model, we obtain the effective degrees of freedom including the corrections due to non-trivial interaction properties of particles in the Standard Model for a wide temperature interval. The impact of such corrections on the spectrum of primordial gravitational waves as well as the damping effect due to free-streaming particles is investigated by numerically solving the evolution equation of tensor perturbations in the expanding universe. It is shown that the reevaluation of the effects of free-streaming photons and neutrinos gives rise to some additional damping features overlooked in previous studies. We also observe that the continuous nature of the QCD crossover results in a smooth spectrum for modes that reenter the horizon at around the epoch of the QCD phase transition. Furthermore, we explicitly show that the values of the effective degrees of freedom remain smaller than the commonly used value 106.75 even at temperature much higher than the critical temperature of the electroweak crossover, and that the amplitude of primordial gravitational waves at a frequency range relevant to direct detection experiments becomes $\mathcal{O}(1)\,\%$ larger than previous estimates that do not include such corrections. This effect can be relevant to future high-sensitivity gravitational wave experiments such as ultimate DECIGO. Our results on the temperature evolution of the effective degrees of freedom are made available as tabulated data and fitting functions, which can also be used in the analysis of other cosmological relics.

Journal ArticleDOI
20 Dec 2018-Nature
TL;DR: It is argued that the interpretation of Bowman et al. 2018's data as an unambiguous detection of the cosmological 21-cm absorption signature is in question, because the modelling process they used implies unphysical parameters for the foreground emission.
Abstract: It is predicted that the spectrum of radio emission from the whole sky should show a dip arising from the action of the light from the first stars on the hydrogen atoms in the surrounding gas, which causes the 21-cm line to appear in absorption against the cosmic microwave background. Bowman et al. 2018 identified a broad flat-bottomed absorption profile centred at 78 MHz, which could be this feature, although the depth of the profile is much larger than expected. We have examined the modelling process they used and find that their data implies unphysical parameters for the foreground emission and also that their solution is not unique in the sense that we found other simple formulations for the signal that are different in shape but that also fit their data. We argue that this calls into question the interpretation of these data as an unambiguous detection of the cosmological 21-cm absorption signature.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate whether the tension between the value of the Hubble constant, inferred from local distance indicators and the angular scale of fluctuations in the Cosmic Microwave Background (CMB), is significant enough to warrant new physics in the form of modifying or adding energy components to the standard cosmological model.
Abstract: The $\Lambda$ Cold Dark Matter model ($\Lambda$CDM) represents the current standard model in cosmology. Within this, there is a tension between the value of the Hubble constant, $H_0$, inferred from local distance indicators and the angular scale of fluctuations in the Cosmic Microwave Background (CMB). We investigate whether the tension is significant enough to warrant new physics in the form of modifying or adding energy components to the standard cosmological model. We find that late time dark energy explanations are slightly disfavoured whereas a pre-CMB decoupling extra dark energy component has a marginally positive Bayesian evidence. A constant equation of state of the additional early energy density is constrained to 0.086$^{+0.04}_{-0.03}$. Although this value deviates significantly from 1/3, valid for dark radiation, the latter is not disfavoured based on the Bayesian evidence. If the tension persists, future estimates of $H_0$ at the 1$\%$ level will be able to decisively determine which of the proposed explanations is favoured.

Journal ArticleDOI
TL;DR: In this article, the authors review different types of phase transitions that can appear in our cosmic history, and their applications and experimental signatures in particular in the context of exciting gravitational waves, which could be potentially be constrained by LIGO/VIRGO, Kagra, and eLISA.
Abstract: The study of cosmic phase transitions are of central interest in modern cosmology. In the standard model of cosmology the Universe begins in a very hot state, right after at the end of inflation via the process of reheating/preheating, and cools to its present temperature as the Universe expands. Both new and existing physics at any scale can be responsible for catalyzing either first, second or cross over phase transition, which could be either thermal or non-thermal with a potential observable imprints. Thus this field prompts a rich dialogue between gravity, particle physics and cosmology. It is all but certain that at least two cosmic phase transitions have occurred - the electroweak and the QCD phase transitions. The focus of this review will be primarily on phase transitions above such scales, We review different types of phase transitions that can appear in our cosmic history, and their applications and experimental signatures in particular in the context of exciting gravitational waves, which could be potentially be constrained by LIGO/VIRGO, Kagra, and eLISA.

Journal ArticleDOI
TL;DR: In this article, the evolution of scalar perturbations in f(T) teleparallel gravity and its effects on the cosmic microwave background (CMB) anisotropy were investigated.
Abstract: We investigate the evolution of scalar perturbations in f(T) teleparallel gravity and its effects on the cosmic microwave background (CMB) anisotropy. The f(T) gravity generalizes the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. For the first time, we derive the observational constraints on the modified teleparallel gravity using the CMB temperature power spectrum from Planck's estimation, in addition to data from baryonic acoustic oscillations (BAO) and local Hubble constant measurements. We find that a small deviation of the f(T) gravity model from the ΛCDM cosmology is slightly favored. Besides that, the f(T) gravity model does not show tension on the Hubble constant that prevails in the ΛCDM cosmology. It is clear that f(T) gravity is also consistent with the CMB observations, and undoubtedly it can serve as a viable candidate amongst other modified gravity theories.

01 Dec 2018
TL;DR: This review is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission and discusses five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis.
Abstract: Euclid is a European Space Agency medium class mission selected for launch in 2020 within the Cosmic Vision 2015 2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and redshifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

Journal ArticleDOI
TL;DR: In this paper, the authors compare measurements of the total matter power spectrum from the Horizon cosmological hydrodynamical simulations: a dark matter only run, one with full baryonic physics, and another lacking Active Galactic Nuclei (AGN) feedback.
Abstract: Accurate cosmology from upcoming weak lensing surveys relies on knowledge of the total matter power spectrum at percent level at scales $k < 10$ $h$/Mpc, for which modelling the impact of baryonic physics is crucial. We compare measurements of the total matter power spectrum from the Horizon cosmological hydrodynamical simulations: a dark matter-only run, one with full baryonic physics, and another lacking Active Galactic Nuclei (AGN) feedback. Baryons cause a suppression of power at $k\simeq 10$ $h/$Mpc of $<15\%$ at $z=0$, and an enhancement of a factor of a few at smaller scales due to the more efficient cooling and star formation. The results are sensitive to the presence of the highest mass haloes in the simulation and the distribution of dark matter is also impacted up to a few percent. The redshift evolution of the effect is non-monotonic throughout $z=0-5$ due to an interplay between AGN feedback and gas pressure, and the growth of structure. We investigate the effectiveness of the "baryonic correction model" proposed by Schneider & Teyssier (2015) in describing our results. We require a different redshift evolution and propose an alternative fitting function with $4$ free parameters that reproduces our results within $5\%$. Compared to other simulations, we find the impact of baryonic processes on the total matter power spectrum to be smaller at $z=0$. Nevertheless, our results also suggest that AGN feedback is not strong enough in the simulation. Total matter power spectra from the Horizon simulations are made publicly available at this https URL

Journal ArticleDOI
TL;DR: In this paper, the authors propose soft photon emission by light dark matter as a natural solution to the 21 cm anomaly, and find that the signal singles out a photophilic dark matter candidate characterized by an enhanced collective decay mechanism, such as axion mini-clusters.