scispace - formally typeset
Search or ask a question

Showing papers on "Dengue virus published in 2014"


Journal ArticleDOI
TL;DR: The first direct evidence of human ZIKV infections in Gabon is provided, and its first occurrence in the Asian tiger mosquito, Aedes albopictus is revealed.
Abstract: Background Chikungunya and dengue viruses emerged in Gabon in 2007, with large outbreaks primarily affecting the capital Libreville and several northern towns. Both viruses subsequently spread to the south-east of the country, with new outbreaks occurring in 2010. The mosquito species Aedes albopictus, that was known as a secondary vector for both viruses, recently invaded the country and was the primary vector involved in the Gabonese outbreaks. We conducted a retrospective study of human sera and mosquitoes collected in Gabon from 2007 to 2010, in order to identify other circulating arboviruses. Methodology/Principal Findings Sample collections, including 4312 sera from patients presenting with painful febrile disease, and 4665 mosquitoes belonging to 9 species, split into 247 pools (including 137 pools of Aedes albopictus), were screened with molecular biology methods. Five human sera and two Aedes albopictus pools, all sampled in an urban setting during the 2007 outbreak, were positive for the flavivirus Zika (ZIKV). The ratio of Aedes albopictus pools positive for ZIKV was similar to that positive for dengue virus during the concomitant dengue outbreak suggesting similar mosquito infection rates and, presumably, underlying a human ZIKV outbreak. ZIKV sequences from the envelope and NS3 genes were amplified from a human serum sample. Phylogenetic analysis placed the Gabonese ZIKV at a basal position in the African lineage, pointing to ancestral genetic diversification and spread. Conclusions/Significance We provide the first direct evidence of human ZIKV infections in Gabon, and its first occurrence in the Asian tiger mosquito, Aedes albopictus. These data reveal an unusual natural life cycle for this virus, occurring in an urban environment, and potentially representing a new emerging threat due to this novel association with a highly invasive vector whose geographic range is still expanding across the globe.

628 citations


Journal ArticleDOI
TL;DR: The discovery of ZIKV as the etiologic agent was not achieved through retrospective testing of serum from patients incorrectly diagnosed as having dengue, but rather the result of an active, coordinated investigation by the Yap State Department of Health Services with instrumental assistance from international partners.
Abstract: To the Editor: We wish to clarify an inaccuracy in a letter in Emerging Infectious Diseases by Cao-Lormeau et al (1) The authors state “In 2007, the first ZIKV outbreak reported outside Africa and Asia was retrospectively documented from biological samples from patients on Yap Island, Federated States of Micronesia, North Pacific, who had received an incorrect diagnosis of dengue virus (DENV)” Although the first outbreak of Zika virus (ZIKV) infection reported outside Africa or Asia was in Yap, it was not retrospectively identified from serum samples incorrectly diagnosed as positive for dengue virus The outbreak was first identified by the Yap State Department of Health Services, and an investigation to determine the etiologic agent was initiated Although dengue was initially part of the differential diagnosis, and a few patients had evidence of IgM against dengue virus by a rapid diagnostic test, clinicians in Yap believed that the clinical syndrome was not consistent with dengue Thus, assistance was requested from the US Centers for Disease Control and Prevention and the World Health Organization to strengthen the epidemiologic investigation and provide confirmatory laboratory testing Serum samples collected during the active investigation were sent to the Arboviral Diseases Diagnostic Laboratory at the Centers for Disease Control and Prevention where testing determined that the cause of the infections was ZIKV (2) This discovery of ZIKV as the etiologic agent was not achieved through retrospective testing of serum from patients incorrectly diagnosed as having dengue, but rather the result of an active, coordinated investigation by the Yap State Department of Health Services with instrumental assistance from international partners

524 citations


Journal ArticleDOI
TL;DR: The global distribution and co-circulation of each DENV type from 1943 to 2013 is mapped to show how detection of all types has expanded worldwide together with growing hyperendemicity and there remains a dearth of type-specific information in many parts of the world.

517 citations


Journal ArticleDOI
TL;DR: Since January 2012, the Pacific Region has experienced 28 new documented outbreaks and circulation of dengue, chikungunya and Zika virus and it is likely that this is only the early stages of a wave that will continue for several years.
Abstract: Since January 2012, the Pacific Region has experienced 28 new documented outbreaks and circulation of dengue, chikungunya and Zika virus. These mosquito-borne disease epidemics seem to become more frequent and diverse, and it is likely that this is only the early stages of a wave that will continue for several years. Improved surveillance and response measures are needed to mitigate the already heavy burden on island health systems and limit further spread to other parts of the world.

452 citations


Journal ArticleDOI
TL;DR: The discovery and characterization of the IFITM proteins are reviewed, the spectrum of their antiviral activities are described, and potential mechanisms underlying these effects are discussed.
Abstract: Animal cells use a wide variety of mechanisms to slow or prevent replication of viruses. These mechanisms are usually mediated by antiviral proteins whose expression and activities can be constitutive but are frequently amplified by interferon induction. Among these interferon-stimulated proteins, members of the IFITM (interferon-induced transmembrane) family are unique because they prevent infection before a virus can traverse the lipid bilayer of the cell. At least three human IFITM proteins—IFITM1, IFITM2, and IFITM3—have antiviral activities. These activities limit infection in cultured cells by many viruses, including dengue virus, Ebola virus, influenza A virus, severe acute respiratory syndrome coronavirus, and West Nile virus. Murine Ifitm3 controls influenza A virus infection in vivo, and polymorphisms in human IFITM3 correlate with the severity of both seasonal and highly pathogenic avian influenza virus. Here we review the discovery and characterization of the IFITM proteins, describe the spectrum of their antiviral activities, and discuss potential mechanisms underlying these effects.

353 citations


Journal ArticleDOI
TL;DR: An existing modelling framework is expanded with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus, which predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year and suggests Ae.
Abstract: Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we explicitly outlined here, point to clear targets for entomological investigation.

294 citations


Journal ArticleDOI
TL;DR: In this paper, the authors found that Wolbachia-infected field A. aegypti transinfected with the wMel strain showed limited DENV replication and dissemination to the head compared to uninfected controls.
Abstract: Introduction Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. Methodology/Principal Findings Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. Conclusions/Significance Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.

284 citations


20 Feb 2014
TL;DR: The results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachian biocontrol may be a successful strategy for reducing dengue transmission in the field.
Abstract: Introduction Dengue is one of the most widespread mosquito-borne diseases in the world The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods The discovery that A aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus Methodology/Principal Findings Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes Conclusions/Significance Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field

261 citations


Journal ArticleDOI
TL;DR: New knowledge related to dengue ADE is reviewed and areas where there has been little research progress are pointed to.
Abstract: Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as "knowns" and "unknowns."

247 citations


Journal ArticleDOI
TL;DR: This bacterium isolated from the midgut of field-caught Aedes aegypti exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential.
Abstract: Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

232 citations


Journal ArticleDOI
TL;DR: This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells.
Abstract: Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells.

Journal ArticleDOI
TL;DR: A systems biological approach to analyze immune responses to dengue in humans revealed that genes encoding proinflammatory mediators and type I interferon-related proteins were associated with high DENV levels during initial symptomatic disease and CD14(+)CD16(+) monocytes increased in the blood.

Journal ArticleDOI
TL;DR: It is demonstrated that the level of oxidative stress is critical to the control of both antiviral and apoptotic programs in DENV-infected human Mo-DC and highlight the importance of redox homeostasis in the outcome of DENV infection.
Abstract: Dengue virus (DENV) is a re-emerging arthropod borne flavivirus that infects more than 300 million people worldwide, leading to 50,000 deaths annually. Because dendritic cells (DC) in the skin and blood are the first target cells for DENV, we sought to investigate the early molecular events involved in the host response to the virus in primary human monocyte-derived dendritic cells (Mo-DC). Using a genome-wide transcriptome analysis of DENV2-infected human Mo-DC, three major responses were identified within hours of infection - the activation of IRF3/7/STAT1 and NF-κB-driven antiviral and inflammatory networks, as well as the stimulation of an oxidative stress response that included the stimulation of an Nrf2-dependent antioxidant gene transcriptional program. DENV2 infection resulted in the intracellular accumulation of reactive oxygen species (ROS) that was dependent on NADPH-oxidase (NOX). A decrease in ROS levels through chemical or genetic inhibition of the NOX-complex dampened the innate immune responses to DENV infection and facilitated DENV replication; ROS were also essential in driving mitochondrial apoptosis in infected Mo-DC. In addition to stimulating innate immune responses to DENV, increased ROS led to the activation of bystander Mo-DC which up-regulated maturation/activation markers and were less susceptible to viral replication. We have identified a critical role for the transcription factor Nrf2 in limiting both antiviral and cell death responses to the virus by feedback modulation of oxidative stress. Silencing of Nrf2 by RNA interference increased DENV-associated immune and apoptotic responses. Taken together, these data demonstrate that the level of oxidative stress is critical to the control of both antiviral and apoptotic programs in DENV-infected human Mo-DC and highlight the importance of redox homeostasis in the outcome of DENV infection.

Journal ArticleDOI
TL;DR: The host innate immune response to DENV and the mechanisms of immune evasion that DENV has developed to manipulate cellular antiviral responses are discussed.

Journal ArticleDOI
01 Apr 2014-eLife
TL;DR: An assay for real-time monitoring of Xrn1 resistance is developed that is used with mutagenesis and RNA folding experiments to show thatXrn1-resistant RNAs adopt a specific fold organized around a three-way junction, directly linking RNA structure to sfRNA production.
Abstract: More than 40% of people around the globe are at risk of being bitten by mosquitoes infected with the virus that causes Dengue fever. Every year, more than 100 million of these individuals are infected. Many develop severe headaches, pain, and fever, but some develop a life-threatening condition where tiny blood vessels in the body begin to leak. If not treated quickly, this more severe manifestation of the illness can lead to death. There are currently no specific therapies or vaccines against Dengue or many other closely related viruses such as West Nile and Japanese Encephalitis. These viruses use instructions encoded in a single strand of RNA to take over an infected cell and to reproduce. The viruses also exploit an enzyme that cells use to destroy RNA to instead produce short stretches of RNA called sfRNAs that, among other things, may help the virus to avoid the immune system of its host. Understanding exactly how Dengue and other viruses thwart this enzyme—which is called Xrn1—may help scientists develop treatments or vaccines for these diseases. Chapman et al. have now shown that Dengue virus RNA contains a number of RNA elements that prevent it being completely degraded by the Xrn1 enzyme. In particular, a junction formed by three RNA helixes is critical for stopping the enzyme in its tracks, leaving the disease-associated sfRNA behind. A single mutation in the Dengue RNA disrupts the structure of the three-helix junction and allows the enzyme to completely destroy the RNA. A similar mutation was also made in the West Nile virus RNA and when human cells were infected with the mutated West Nile virus, the short sfRNAs were not produced. Treatments or vaccines targeting this structure may therefore help reduce illness associated with Dengue and related viruses.

Journal ArticleDOI
15 Apr 2014-PLOS ONE
TL;DR: Results showed that dengue had broader tropism comparing to what was described before in literature, replicating in hepatocytes, type II pneumocytes and cardiac fibers, as well as in resident and circulating monocytes/macrophages and endothelial cells.
Abstract: Dengue is a public health problem, with several gaps in understanding its pathogenesis. Studies based on human fatal cases are extremely important and may clarify some of these gaps. In this work, we analyzed lesions in different organs of four dengue fatal cases, occurred in Brazil. Tissues were prepared for visualization in optical and electron microscopy, with damages quantification. As expected, we observed in all studied organ lesions characteristic of severe dengue, such as hemorrhage and edema, although other injuries were also detected. Cases presented necrotic areas in the liver and diffuse macro and microsteatosis, which were more accentuated in case 1, who also had obesity. The lung was the most affected organ, with hyaline membrane formation associated with mononuclear infiltrates in patients with pre-existing diseases such as diabetes and obesity (cases 1 and 2, respectively). These cases had also extensive acute tubular necrosis in the kidney. Infection induced destruction of cardiac fibers in most cases, with absence of nucleus and loss of striations, suggesting myocarditis. Spleens revealed significant destruction of the germinal centers and atrophy of lymphoid follicles, which may be associated to decrease of T cell number. Circulatory disturbs were reinforced by the presence of megakaryocytes in alveolar spaces, thrombus formation in glomerular capillaries and loss of endothelium in several tissues. Besides histopathological and ultrastructural observations, virus replication were investigated by detection of dengue antigens, especially the non-structural 3 protein (NS3), and confirmed by the presence of virus RNA negative strand (in situ hybridization), with second staining for identification of some cells. Results showed that dengue had broader tropism comparing to what was described before in literature, replicating in hepatocytes, type II pneumocytes and cardiac fibers, as well as in resident and circulating monocytes/macrophages and endothelial cells.

Journal ArticleDOI
TL;DR: The structure reveals the mechanism by which this potent and specific antibody blocks viral infection and shows that HMAb 1F4 can neutralize DENV at different stages of viral entry in a cell type and receptor dependent manner.
Abstract: Dengue virus (DENV), which consists of four serotypes (DENV1-4), infects over 400 million people annually. Previous studies have indicated most human monoclonal antibodies (HMAbs) from dengue patients are cross-reactive and poorly neutralizing. Rare neutralizing HMAbs are usually serotype-specific and bind to quaternary structure-dependent epitopes. We determined the structure of DENV1 complexed with Fab fragments of a highly potent HMAb 1F4 to 6 A resolution by cryo-EM. Although HMAb 1F4 appeared to bind to virus and not E proteins in ELISAs in the previous study, our structure showed that the epitope is located within an envelope (E) protein monomer, and not across neighboring E proteins. The Fab molecules bind to domain I (DI), and DI-DII hinge of the E protein. We also showed that HMAb 1F4 can neutralize DENV at different stages of viral entry in a cell type and receptor dependent manner. The structure reveals the mechanism by which this potent and specific antibody blocks viral infection.

Journal ArticleDOI
TL;DR: This is one of the first studies of human subjects to suggest a window of cross-protection following DENV infection since Sabin's challenge studies in the 1940s and support a pathogenesis model where cross-reactive antibodies wane from higher-titer, protective levels to lower- titer, detrimental levels.
Abstract: Background. Despite the strong association between secondary dengue virus (DENV) infections and dengue hemorrhagic fever (DHF), the majority of secondary infections are subclinical or mild. The determinants of clinical severity remain unclear, though studies indicate a titer-dependent and time-dependent role of cross-protective anti-DENV antibodies. Methods. Data from 2 sequential prospective cohort studies were analyzed for subclinical and symptomatic DENV infections in schoolchildren in Kamphaeng Phet, Thailand (1998–2002 and 2004–2007). Children experiencing ≥1 DENV infection were selected as the population for analysis (contributing 2169 person-years of follow-up). Results. In total, 1696 children had ≥1 DENV infection detected during their enrollment; 268 experienced 2 or more infections. A shorter time interval between infections was associated with subclinical infection in children seronegative for DENV at enrollment, for whom a second-detected DENV infection is more likely to reflect a true second infection (average of 2.6 years between infections for DHF, 1.9 for DF, and 1.6 for subclinical infections). Conclusions. These findings support a pathogenesis model where cross-reactive antibodies wane from higher-titer, protective levels to lower-titer, detrimental levels. This is one of the first studies of human subjects to suggest a window of cross-protection following DENV infection since Sabin's challenge studies in the 1940s.

Journal ArticleDOI
TL;DR: It is found that chikungunya and dengue exhibit different transient dynamics and long-term endemic levels, indicating that risk of invasion or an outbreak can change with vector-virus assemblages.

Journal ArticleDOI
TL;DR: An early period in virus-infected mosquito cells during which the formation of a virus-modified membrane structure, the double-membrane vesicle, is proportional to the rate of viral RNA synthesis is defined.
Abstract: During dengue virus infection of host cells, intracellular membranes are rearranged into distinct subcellular structures such as double-membrane vesicles, convoluted membranes, and tubular structures. Recent electron tomographic studies have provided a detailed three-dimensional architecture of the double-membrane vesicles, representing the sites of dengue virus replication, but temporal and spatial evidence linking membrane morphogenesis with viral RNA synthesis is lacking. Integrating techniques in electron tomography and molecular virology, we defined an early period in virus-infected mosquito cells during which the formation of a virus-modified membrane structure, the double-membrane vesicle, is proportional to the rate of viral RNA synthesis. Convoluted membranes were absent in dengue virus-infected C6/36 cells. Electron tomographic reconstructions elucidated a high-resolution view of the replication complexes inside vesicles and allowed us to identify distinct pathways of particle formation. Hence, our findings extend the structural details of dengue virus replication within mosquito cells and highlight their differences from mammalian cells. IMPORTANCE Dengue virus induces several distinct intracellular membrane structures within the endoplasmic reticulum of mammalian cells. These structures, including double-membrane vesicles and convoluted membranes, are linked, respectively, with viral replication and viral protein processing. However, dengue virus cycles between two disparate animal groups with differing physiologies: mammals and mosquitoes. Using techniques in electron microscopy, we examined the differences between intracellular structures induced by dengue virus in mosquito cells. Additionally, we utilized techniques in molecular virology to temporally link events in virus replication to the formation of these dengue virus-induced membrane structures.

Journal ArticleDOI
TL;DR: The rate of inapparent dengue virus (DENV) infections was positively correlated with the incidence of disease the previous year, strongly supporting an important role for short-term heterotypic immunity in determining the outcome of infection.
Abstract: Dengue is a major international public health concern and the number of outbreaks has escalated greatly. Human migration, international trade and travel are constantly introducing new vectors and pathogens into novel geographic areas. Of particular interest is the extent to which dengue virus (DENV) infections are subclinical or inapparent. Not only may such infections contribute to the global spread of DENV by human migration, but also seroprevalence rates in naive populations may be initially high despite minimal numbers of detectable clinical cases. As the probability of severe disease is increased in secondary infections, populations may thus be primed, with serious public health consequences following introduction of a new serotype. In addition, pre-existing immunity from inapparent infections may affect vaccine uptake and the ratio of clinically apparent to inapparent infection could affect the interpretation of vaccine trials. We performed a literature search for inapparent DENV infections and provide an analytical review of their frequency and associated risk factors. Inapparent rates were highly variable, but “inapparent” was the major outcome of infection in all prospective studies. Differences in the epidemiological context and type of surveillance account for much of the variability in inapparent infection rates. However, one particular epidemiological pattern was shared by four longitudinal cohort studies: the rate of inapparent DENV infections was positively correlated with the incidence of disease the previous year, strongly supporting an important role for short-term heterotypic immunity in determining the outcome of infection. Primary and secondary infections were equally likely to be inapparent. Knowledge of the extent to which viruses from inapparent infections are transmissible to mosquitoes is urgently needed. Inapparent infections need to be considered for their impact on disease severity, transmission dynamics, and vaccine efficacy and uptake.

Journal ArticleDOI
TL;DR: NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections.
Abstract: Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed characterized serum specimens for the panels used in the evaluation. Microplate enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT formats) were represented by the kits. Each ELISA was evaluated by 2 laboratories and RDTs were evaluated by at least 3 laboratories. The reference tests for IgM anti-DENV were laboratory developed assays produced by the Armed Forces Research Institute for Medical Science (AFRIMS) and the Centers for Disease Control and Prevention (CDC), and the NS1 reference test was reverse transcriptase polymerase chain reaction (RT-PCR). Results were analyzed to determine sensitivity, specificity, inter-laboratory and inter-reader agreement, lot-to-lot variation and ease-of-use. NS1 ELISA sensitivity was 60–75% and specificity 71–80%; NS1 RDT sensitivity was 38–71% and specificity 76–80%; the IgM anti-DENV RDTs sensitivity was 30–96%, with a specificity of 86–92%, and IgM anti-DENV ELISA sensitivity was 96–98% and specificity 78–91%. NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections. The reproducibility of the NS1 RDTs ranged from 92-99% and the IgM anti-DENV RDTs from 88–94%.

Journal ArticleDOI
TL;DR: The expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses are discussed.
Abstract: The flaviviruses dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex spp.), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses.

Journal ArticleDOI
20 Nov 2014-PLOS ONE
TL;DR: Most tests had lower sensitivity for DENV-4 relative to the other three serotypes, were less sensitive in detecting secondary infections, and appeared to be most sensitive on Day 3–4 post symptom onset.
Abstract: Background Early diagnosis of dengue virus (DENV) infection can improve clinical outcomes by ensuring close follow-up, initiating appropriate supportive therapies and raising awareness to the potential of hemorrhage or shock. Non-structural glycoprotein-1 (NS1) has proven to be a useful biomarker for early diagnosis of dengue. A number of rapid diagnostic tests (RDTs) and enzyme-linked immunosorbent assays (ELISAs) targeting NS1 antigen (Ag) are now commercially available. Here we evaluated these tests using a well-characterized panel of clinical samples to determine their effectiveness for early diagnosis. Methodology/Principal Findings Retrospective samples from South America were used to evaluate the following tests: (i) “Dengue NS1 Ag STRIP” and (ii) “Platelia Dengue NS1 Ag ELISA” (Bio-Rad, France), (iii) “Dengue NS1 Detect Rapid Test (1st Generation)” and (iv) “DENV Detect NS1 ELISA” (InBios International, United States), (v) “Panbio Dengue Early Rapid (1st generation)” (vi) “Panbio Dengue Early ELISA (2nd generation)” and (vii) “SD Bioline Dengue NS1 Ag Rapid Test” (Alere, United States). Overall, the sensitivity of the RDTs ranged from 71.9%–79.1% while the sensitivity of the ELISAs varied between 85.6–95.9%, using virus isolation as the reference method. Most tests had lower sensitivity for DENV-4 relative to the other three serotypes, were less sensitive in detecting secondary infections, and appeared to be most sensitive on Day 3–4 post symptom onset. The specificity of all evaluated tests ranged from 95%–100%. Conclusions ELISAs had greater overall sensitivity than RDTs. In conjunction with other parameters, the performance data can help determine which dengue diagnostics should be used during the first few days of illness, when the patients are most likely to present to a clinic seeking care.

Journal ArticleDOI
27 Jan 2014-Viruses
TL;DR: In this paper, a subgenomic flavivirus RNA (sfRNA) derived from the 3' untranslated region (UTR) was found to be a product of incomplete degradation of genomic RNA by the cell 5'−3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3"UTR. sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sf RNA remains to be elucidated.
Abstract: Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are shown to produce a unique subgenomic flavivirus RNA (sfRNA) derived from the 3' untranslated region (UTR). sfRNA is a product of incomplete degradation of genomic RNA by the cell 5'–3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sfRNA remains to be elucidated.

Journal ArticleDOI
24 Nov 2014-Viruses
TL;DR: This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.
Abstract: The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.

Journal ArticleDOI
TL;DR: This work used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primaryDENV-immune human sera and showed that although the removal of DENV E-specific antibodies using recombinant E protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining.
Abstract: Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue.

Journal ArticleDOI
TL;DR: Attention is focused on outbreaks of dengue and chikungunya occurring in previously disease-free areas and factors associated with the long-distance spread of the vector-borne infections, such as mutations increasing viral fitness, climate change, urbanization, and globalization of humans and vectors.
Abstract: Mosquito-borne virus infections, such as dengue and chikungunya, are continuously expanding their geographical range. The dengue virus, which is known to be a common cause of febrile illness in tropical areas of the Old World, is now widespread in the Americas. In most affected areas, all the four dengue virus serotypes have circulated. Recently, small clusters of dengue have been identified also in Southern Europe during the hot season. The chikungunya virus, initially restricted to Central Africa, where is a common cause of sporadic cases or small outbreaks, and Asia, where it is used to cause large epidemics, has recently invaded new territories. After ravaging Indian Ocean Islands and the Indian subcontinent, CHIKV caused an outbreak in north-eastern Italy. Recently, chikungunya has reached the Caribbean, causing for the first time a large epidemic on the American continent. Although Aedes aegypti is the main vector of both viruses, Aedes albopictus, the Asian 'Tiger' mosquito, is now playing an increasingly important role, contributing to their spread in temperate climate areas. Hereby, we focus the attention on outbreaks of dengue and chikungunya occurring in previously disease-free areas and discuss factors associated with the long-distance spread of the vector-borne infections, such as mutations increasing viral fitness, climate change, urbanization, and globalization of humans and vectors.

Journal ArticleDOI
TL;DR: It is demonstrated that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce mi RNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs.
Abstract: The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines.

Journal ArticleDOI
TL;DR: The findings emphasise the acceptable tolerability and immunogenicity of the tetravalentDENVax formulations in healthy, flavivirus-naive adults and further clinical testing of DENVax in different age groups and in dengue-endemic areas is warranted.
Abstract: Summary Background Dengue virus is the most serious mosquito-borne viral threat to public health and no vaccines or antiviral therapies are approved for dengue fever. The tetravalent DENVax vaccine contains a molecularly characterised live attenuated dengue serotype-2 virus (DENVax-2) and three recombinant vaccine viruses expressing the prM and E structural genes for serotypes 1, 3, and 4 in the DENVax-2 genetic backbone. We aimed to assess the safety and immunogenicity of tetravalent DENVax formulations. Methods We undertook a randomised, double-blind, phase 1, dose-escalation trial between Oct 11, 2011, and Nov 9, 2011, in the Rionegro, Antioquia, Colombia. The first cohort of participants (aged 18–45 years) were randomly assigned centrally, via block randomisation, to receive a low-dose formulation of DENvax, or placebo, by either subcutaneous or intradermal administration. After a safety assessment, participants were randomly assigned to receive a high-dose DENVax formulation, or placebo, by subcutaneous or intradermal administration. Group assignment was not masked from study pharmacists, but allocation was concealed from participants, nurses, and investigators. Primary endpoints were frequency and severity of injection-site and systemic reactions within 28 days of each vaccination. Secondary endpoints were the immunogenicity of DENVax against all four dengue virus serotypes, and the viraemia due to each of the four vaccine components after immunisation. Analysis was by intention to treat for safety and per protocol for immunogenicity. Because of the small sample size, no detailed comparison of adverse event rates were warranted. The trial is registered with ClinicalTrials.gov, number NCT01224639. Findings We randomly assigned 96 patients to one of the four study groups: 40 participants (42%) received low-dose vaccine and eight participants (8%) received placebo in the low-dose groups; 39 participants (41%) received high-dose vaccine, with nine (9%) participants assigned to receive placebo. Both formulations were well tolerated with mostly mild and transient local or systemic reactions. No clinically meaningful differences were recorded in the overall incidence of local and systemic adverse events between patients in the vaccine and placebo groups; 68 (86%) of 79 participants in the vaccine groups had solicited systemic adverse events compared with 13 (76%) of 17 of those in the placebo groups. By contrast, 67 participants (85%) in the vaccine group had local solicited reactions compared with five (29%) participants in the placebo group. Immunisation with either high-dose or low-dose DENVax formulations induced neutralising antibody responses to all four dengue virus serotypes; 30 days after the second dose, 47 (62%) of 76 participants given vaccine seroconverted to all four serotypes and 73 (96%) participants seroconverted to three or more dengue viruses. Infectious DENVax viruses were detected in only ten (25%) of 40 participants in the low-dose group and 13 (33%) of 39 participants in the high-dose group. Interpretation Our findings emphasise the acceptable tolerability and immunogenicity of the tetravalent DENVax formulations in healthy, flavivirus-naive adults. Further clinical testing of DENVax in different age groups and in dengue-endemic areas is warranted. Funding Takeda Vaccines.