scispace - formally typeset
Search or ask a question

Showing papers on "Fatty acid-binding protein published in 2018"


Journal ArticleDOI
15 Nov 2018-Gene
TL;DR: This review introduces several isoforms of FABPs (FABP1-12) and summarizes their function and their possible roles in cancer development through some proposed mechanisms.

84 citations


Journal ArticleDOI
TL;DR: It is revealed for the first time that high expression of FABP5 plays a critical role in alterations of lipid metabolism, leading to cancer development and metastasis in highly aggressive prostate and breast cancer cells.

76 citations


Journal ArticleDOI
TL;DR: The aims of this study were to investigate the expression and function of FABPs1‐9 in human and animal models of obesity‐related HCC.
Abstract: Background and aims Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality. Risk factors for developing HCC include viral hepatitis, alcohol and obesity. Fatty acid-binding proteins (FABPs) bind long-chain free fatty acids (FFAs) and are expressed in a tissue-specific pattern; FABP1 being the predominant hepatic form, and FABP4 the predominant adipocyte form. The aims of this study were to investigate the expression and function of FABPs1-9 in human and animal models of obesity-related HCC. Methods FABP1-9 expression was determined in a mouse model of obesity-promoted HCC. Based on these data, expression and function of FABP4 was determined in human HCC cells (HepG2 and HuH7) in vitro. Serum from patients with different underlying hepatic pathologies was analysed for circulating FABP4 levels. Results Livers from obese mice, independent of tumour status, exhibited increased FABP4 mRNA and protein expression concomitant with elevated serum FABP4. In vitro, FABP4 expression was induced in human HCC cells by FFA treatment, and led to FABP4 release into culture medium. Treatment of HCC cells with exogenous FABP4 significantly increased proliferation and migration of human HCC cells. Patient serum analysis demonstrated significantly increased FABP4 in those with underlying liver disease, particularly non-alcoholic fatty liver disease (NAFLD) and HCC. Conclusions These data suggest FABP4, an FABP not normally expressed in the liver, can be synthesized and secreted by hepatocytes and HCC cells, and that FABP4 may play a role in regulating tumour progression in the underlying setting of obesity.

59 citations


Journal ArticleDOI
TL;DR: MVM FATP6 and CD36 protein expression is increased and LCPUFA are preferentially routed toward cellular storage in TG in the IUGR placenta, possibly to protect against oxidative stress associated with cellular FA accumulation.
Abstract: Fatty acids (FA) are critical for fetal brain development and are transferred across the placenta by membrane-bound FA transport proteins (FATP), translocases (FAT/CD36), and cytosolic binding proteins (FABP). The cytosolic protein perilipin-2 aids in neutral lipid storage within lipid droplets. Decreased placental nutrient transport is believed to contribute to intrauterine growth restriction (IUGR); however, IUGR placental lipid transport and metabolism are poorly understood. We hypothesized that protein expression of FATPs, FABPs, and perilipin-2 in human placenta is decreased and placental lipid content and incorporation into lipid classes are reduced in IUGR. Placental tissue of idiopathic IUGR (n=25) and gestational age-matched, appropriately grown for gestational age (AGA) fetuses (n=19) was collected. We determined protein expression of FABP4 and perilipin-2 in placental homogenate and FATPs (2, 4, 6, CD36) in syncytiotrophoblast microvillous plasma membrane (MVM) by Western blot. Lipid droplet area (Oil Red O stain) and cellular FA content (GC/MS) were measured in chorionic villous tissue. MVM expression of FATP6 and CD36 was significantly increased in IUGR. The concentrations of seven n-6 and n-3 species long chain polyunsaturated FAs (LCPUFA) were significantly increased in the triglyceride fraction in IUGR vs AGA placenta. In summary, MVM FATP6 and CD36 protein expression is increased and LCPUFA are preferentially routed toward cellular storage in TG in the IUGR placenta, possibly to protect against oxidative stress associated with cellular FA accumulation. We speculate that these changes may be caused by impaired efflux of FA across the fetal-facing syncytiotrophoblast basal plasma membrane in IUGR placenta.

42 citations


Journal ArticleDOI
TL;DR: Findings indicate that FABP4 inhibitor BMS309403 reduces fatty acid-induced ER stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation.

41 citations


Journal ArticleDOI
TL;DR: This review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.
Abstract: The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer. Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network. As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances. Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.

37 citations


Journal ArticleDOI
TL;DR: The high resolution three-dimensional structures of human RBP4 naturally lacking bound retinol purified from plasma, urine and amniotic fluid are reported and a fatty acid molecule bound in the hydrophobic ligand-binding site is found, a result confirmed by mass spectrometry measurements.

36 citations


Journal ArticleDOI
TL;DR: In mice, intraplantar injection of carrageenan induces acute inflammation that is accompanied by edema, enhanced pain sensitivity, and elevations in proinflammatory cytokines and prostaglandin E2 (PGE2) levels, and inhibition of FABP5 reduced pain, Edema, cytokine, and PGE2 levels.

36 citations


Journal ArticleDOI
TL;DR: FABP5 knockdown induced high energy stress leading to induction of apoptosis and cell cycle arrest via AMPK-FOXO3A signaling pathway in prostate cancer cells, suggesting that FABP 5 plays an important role in cellular energy status directing metabolic adaptation to support cellular proliferation and survival.
Abstract: Epidermal or cutaneous fatty acid-binding protein is an intracellular lipid-binding protein, also known as FABP5, and its expression level is closely related to cancer cell proliferation and metastatic activities in various types of carcinoma. However, the molecular mechanisms of FABP5 in cancer cell proliferation and its other functions have remained unclear. In the present study, we have clearly revealed that FABP5 activated expression of metabolic genes (ATP5B, LCHAD, ACO2, FH and MFN2) via a novel signaling pathway in an ERRα (estrogen-related receptor α)-dependent manner in prostate cancer cell lines. To clarify the novel function of FABP5, we examined the activation mechanisms of the ERRα target genes via FABP5. A direct protein-protein interaction between FABP5 and ERRα was demonstrated by immunoprecipitation and GST pull-down assays. We have clearly revealed that FABP5 interacted directly with transcriptional complex containing ERRα and its co-activator PGC-1β to increase expression of the ERRα target genes. In addition, we have shown that FABP5 knockdown induced high energy stress leading to induction of apoptosis and cell cycle arrest via AMPK-FOXO3A signaling pathway in prostate cancer cells, suggesting that FABP5 plays an important role in cellular energy status directing metabolic adaptation to support cellular proliferation and survival.

35 citations


Journal ArticleDOI
TL;DR: The Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid...
Abstract: Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid...

26 citations


Journal ArticleDOI
TL;DR: Findings suggest a potential link between altered fatty acid transport in the atrium and increased AF onset after cardiac surgery.

Journal ArticleDOI
TL;DR: It is suggested that bariatric surgery initiates a novel metabolic shift in subcutaneous adipose tissue to oxidize fatty acids independently from the beiging process through regulation of PPAR isoforms.
Abstract: Bariatric surgery remains the most effective treatment for reducing adiposity and eliminating type 2 diabetes; however, the mechanism(s) responsible have remained elusive. Peroxisome proliferator-activated receptors (PPAR) encompass a family of nuclear hormone receptors that upon activation exert control of lipid metabolism, glucose regulation and inflammation. Their role in adipose tissue following bariatric surgery remains undefined. Subcutaneous adipose tissue biopsies and serum were obtained and evaluated from time of surgery and on postoperative day 7 in patients randomized to Roux-en-Y gastric bypass (n=13) or matched caloric restriction (n=14), as well as patients undergoing vertical sleeve gastrectomy (n=33). Fat samples were evaluated for changes in gene expression, protein levels, β-oxidation, lipolysis and cysteine oxidation. Within 7 days, bariatric surgery acutely drives a change in the activity and expression of PPARγ and PPARδ in subcutaneous adipose tissue thereby attenuating lipid storage, increasing lipolysis and potentiating lipid oxidation. This unique metabolic alteration leads to changes in downstream PPARγ/δ targets including decreased expression of fatty acid binding protein (FABP) 4 and stearoyl-CoA desaturase-1 (SCD1) with increased expression of carnitine palmitoyl transferase 1 (CPT1) and uncoupling protein 2 (UCP2). Increased expression of UCP2 not only facilitated fatty acid oxidation (increased 15-fold following surgery) but also regulated the subcutaneous adipose tissue redoxome by attenuating protein cysteine oxidation and reducing oxidative stress. The expression of UCP1, a mitochondrial protein responsible for the regulation of fatty acid oxidation and thermogenesis in beige and brown fat, was unaltered following surgery. These results suggest that bariatric surgery initiates a novel metabolic shift in subcutaneous adipose tissue to oxidize fatty acids independently from the beiging process through regulation of PPAR isoforms. Further studies are required to understand the contribution of this shift in expression of PPAR isoforms to weight loss following bariatric surgery.

Journal ArticleDOI
TL;DR: A novel mechanism by which saturated FAs promote obesity-associated inflammation through inducing E-FABP/retinoid acid receptor–mediated differentiation of CD11c+ macrophages is demonstrated.
Abstract: Obesity is associated with elevated levels of free fatty acids (FAs) and proinflammatory CD11c+ macrophages. However, whether and how free FAs contribute to CD11c+ macrophage differentiation and proinflammatory functions remain unclear. Here we report that dietary saturated FAs, but not unsaturated FAs, promoted the differentiation and function of CD11c+ macrophages. Specifically, we demonstrated that stearic acid (SA) significantly induced CD11c expression in monocytes through activation of the nuclear retinoid acid receptor. More importantly, cytosolic expression of epidermal FA binding protein (E-FABP) in monocytes/macrophages was shown to be critical to the mediation of the SA-induced effect. Depletion of E-FABP not only inhibited SA-induced CD11c upregulation in macrophages in vitro but also abrogated high-saturated-fat diet-induced skin lesions in obese mouse models in vivo. Altogether, our data demonstrate a novel mechanism by which saturated FAs promote obesity-associated inflammation through inducing E-FABP/retinoid acid receptor-mediated differentiation of CD11c+ macrophages.

Journal ArticleDOI
TL;DR: Fatty acid binding protein 4 levels were significantly elevated during the early hours after the onset of AMI and were robustly increased in OHCA survivors, providing a novel hypothesis that serum FABP4 may represent the adrenergic overdrive that accompanies acute cardiovascular disease, including AMI.
Abstract: Background:Acute myocardial infarction (AMI) induces marked activation of the sympathetic nervous system. Fatty acid binding protein 4 (FABP4) is not only an intracellular protein, but also a secre...

Journal ArticleDOI
TL;DR: This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with previous studies demonstrating a crucial role of FABp5 in BBB transport of DHA and cognitive function.
Abstract: Lower levels of the cognitively-beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood-brain barrier (BBB) transport of plasma-derived DHA, a process facilitated by fatty acid-binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C-DHA in 8-month AD transgenic mice (APPswe,PSEN1∆E9) relative to wild-type, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short-term spatial and recognition memory deficits were observed in AD mice on a 6-month n-3 fatty acid-depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB, which are associated with increased vulnerability to cognitive deficits in mice fed an n-3 fatty acid-depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: GPR132 is an independent monocyte activation marker in diabetes, but does not contribute to PPAR-γ-mediated induction of FABP4 by HODEs.
Abstract: Background:Both activation of monocytes and increased serum fatty acid binding protein-4 (FABP4) occur in diabetes and are associated with increased atherosclerosis. The oxidized lipid, 9-hydroxyoc...

Journal ArticleDOI
TL;DR: CQR-300 inhibited lipid accumulation in 3T3-L1 adipocytes by regulating adipogenesis and reduced fatty acids and triglyceride accumulation via downregulating lipogenesis.
Abstract: The objective of this study was to evaluate the anti-obesity activity and the action mechanism of Cissus quadrangularis extracts (CQR-300) in 3T3-L1 adipocytes. Cissus quadrangularis was extracted with hot water, resulting in CQR-300. The anti-obesity activity of CQR-300 in 3T3-L1 adipocytes was examined by Oil-red O staining. Possible mechanisms of CQR-300 in 3T3-L1 adipocytes were determined by real-time PCR and western blot. Treatment with CQR-300 inhibited lipid accumulation without showing cytotoxicity to 3T3-L1 adipocytes. Furthermore, CQR-300 decreased adipogenesis/lipogenesis-related mRNA expression levels of fatty acid binding protein (aP2), fatty acid synthase (FAS), lipoprotein lipase (LPL), stearoyl-CoA desaturase-1 (SCD-1), and acetyl-CoA carboxylase (ACC). CQR-300 also down-regulated expression levels of adipogenesis/lipogenesis-associated proteins, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element binding protein-1c (SREBP-1c), and FAS. It's also up-regulated the expression level of phosphorylated-AMPK (p-AMPK). Collectively, these results suggested that CQR-300 might have an anti-obesity effect by its ability to decrease expression levels of adipogenesis/lipogenesis-related genes and proteins.

Journal ArticleDOI
TL;DR: In conclusion, RAE exhibited a protective effect against hepatocyte injury in Jian carp and further in vivo studies are needed to provide more evidence for the use of RAE as a hepatoprotective agent for the treatment of hepatocytes injury.
Abstract: Fatty liver is an increasingly serious disease of fish in aquaculture. However, the mechanisms responsible for the occurrence of fatty liver remain unclear, and no effective methods for the prevention and treatment of this disease have yet been found. In the present study, we aimed to develop an in vitro model of hepatocyte injury using oleic acid as hepatotoxicant and evaluate the protective effects of Rhizoma Alismatis extract (RAE) in Jian carp using this model. Primary hepatocytes from Jian carp were isolated and purified and cultured in vitro. The result indicated that 0.4 mmol L-1 oleic acid and 48 h could be the optimal conditions to induce hepatocyte injury model in cultured hepatocytes. Hepatocytes were exposed to oleic acid, followed by the addition of RAE at 0, 1, 5, 10, 20, or 50 μg mL-1. The hepatocytes and supernatant were then analyzed. RAE suppressed oleic acid-induced elevations in aspartate aminotransferase, alanine aminotransferase, triglycerides, total cholesterol, lactate dehydrogenase, alkaline phosphatase, cholinesterase, malondialdehyde, γ-glutamyl transferase, cytochrome P450 1A, cytochrome P450 2E1, liver-type fatty acid binding protein, free fatty acid, fatty acid synthetase, and tumor necrosis factor-α (P < 0.01 or P < 0.05); reduced protein levels of cytochrome P450 1A, nuclear factor (NF)-κB p65, and NF-κB c-Rel; and inhibited cytochrome P4503A, NF-κB c-Rel, nuclear factor erythroid-related factor 2, peroxisome proliferator-activated receptor-α, and cytochrome P4501A mRNA levels. In conclusion, RAE exhibited a protective effect against hepatocyte injury in Jian carp. Further in vivo studies are needed to provide more evidence for the use of RAE as a hepatoprotective agent for the treatment of hepatocyte injury.

Journal ArticleDOI
TL;DR: Milk components originating from blood plasma substrates are synthesized in epithelial cells of the mammary gland and FABPs are a family of small cytoplasmic proteins; nine members of the family have been identified so far.
Abstract: Milk components originating from blood plasma substrates are synthesized in epithelial cells of the mammary gland. Milk lipids are synthesized from fatty acids which bind to specific proteins - FABPs (fatty acid binding proteins). FABPs are a family of small cytoplasmic proteins; nine members of the family have been identified so far (

Journal ArticleDOI
TL;DR: The identification of naphthalene-1-sulfonamide derivatives as novel, potent and selective FABP4 inhibitors by applying a structure-based design strategy and it is demonstrated that 16dk and 16do exhibited a dramatic improvement in glucose and lipid metabolism, by decreasing fasting blood glucose and serum lipid levels, enhancing insulin sensitivity, and ameliorating hepatic steatosis in obese diabetic (db/db) mice.

Journal ArticleDOI
TL;DR: The proteomic results presented here indicate that the intricate and multifaceted pathogenesis of the mdx-4cv model of dystrophinopathy is associated with secondary alterations in the liver affecting especially fatty acid transportation.
Abstract: Duchenne muscular dystrophy is a highly complex multi-system disease caused by primary abnormalities in the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle degeneration, this neuromuscular disorder is also associated with pathophysiological perturbations in many other organs including the liver. To determine potential proteome-wide alterations in liver tissue, we have used a comparative and mass spectrometry-based approach to study the dystrophic mdx-4cv mouse model of dystrophinopathy. The comparative proteomic profiling of mdx-4cv versus wild type liver extracts was carried out with an Orbitrap Fusion Tribrid mass spectrometer. The distribution of identified liver proteins within protein families and potential protein interaction patterns were analysed by systems bioinformatics. Key findings on fatty acid binding proteins were confirmed by immunoblot analysis and immunofluorescence microscopy. The proteomic analysis revealed changes in a variety of protein families, affecting especially fatty acid, carbohydrate and amino acid metabolism, biotransformation, the cellular stress response and ion handling in the mdx-4cv liver. Drastically increased protein species were identified as fatty acid binding protein FABP5, ferritin and calumenin. Decreased liver proteins included phosphoglycerate kinase, apolipoprotein and perilipin. The drastic change in FABP5 was independently verified by immunoblotting and immunofluorescence microscopy. The proteomic results presented here indicate that the intricate and multifaceted pathogenesis of the mdx-4cv model of dystrophinopathy is associated with secondary alterations in the liver affecting especially fatty acid transportation. Since FABP5 levels were also shown to be elevated in serum from dystrophic mice, this protein might be a useful indicator for monitoring liver changes in X-linked muscular dystrophy.

Journal ArticleDOI
TL;DR: Findings indicated that FABP4 contributed to the pathogenesis of I/R-induced AKI and suggested that the inhibition of FABp4 might be a promising therapeutic strategy for AKI treatment.
Abstract: Fatty acid-binding protein 4 (FABP4) is a key mediator of endoplasmic reticulum (ER) stress and apoptosis in diabetes and atherosclerosis. Studies also confirmed that circulating FABP4 depended on renal function in chronic kidney disease (CKD) and acute kidney injury (AKI) patients. However, the function of FABP4 in AKI remains poorly understood and the aim of this study was to investigate the role of FABP4 in ischemia-reperfusion (I/R)-induced AKI. In the present study, renal I/R injury triggered the high expression of the FABP4 gene and protein in the nucleus and cytoplasm of tubular cells of mouse kidney tissue compared to that of Sham. Pretreatment with BMS309403, a highly selective inhibitor of FABP4 at a dose of 20 mg kg−1 d−1 for 4 d, significantly reduced serum creatinine levels to improve acute renal dysfunction and attenuated renal tubular damage in injured kidneys. Pharmacological inhibition of FABP4 also decreased the number of TdT-mediated dUTP nick-end labeling (TUNEL) positive apoptotic tubular cells, accompanied by the down-regulation of cleaved-caspase-3 expression. Furthermore, oral administration of FABP4 inhibitor resulted in a significant attenuation of ER stress indicated by its maker proteins expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 in I/R injured kidneys. In vitro, the increased expression of FABP4 in the human renal proximal tubule cell line (HK-2 cell) was induced by hypoxia followed by reoxygenation (HR) and the FABP4 inhibitor resulted in a significant attenuation of cell apoptosis and ER stress in HR-induced HK-2 cells. In summary, these findings indicated that FABP4 contributed to the pathogenesis of I/R-induced AKI and suggested that the inhibition of FABP4 might be a promising therapeutic strategy for AKI treatment.

Journal ArticleDOI
TL;DR: The results suggest that an HF diet can induce genetically lean pigs into obesity with body fat mass expansion and adipose-related inflammation.
Abstract: Because of their physiological similarity to humans, pigs provide an excellent model for the study of obesity. This study evaluated diet-induced adiposity in genetically lean pigs and found that body weight and energy intake did not differ between controls and pigs fed the high-fat (HF) diet for three months. However, fat mass percentage, adipocyte size, concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), insulin, and leptin in plasma were significantly higher in HF pigs than in controls. The HF diet increased the expression in backfat tissue of genes responsible for cholesterol synthesis such as Insig-1 and Insig-2. Lipid metabolism-related genes including sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase 1 (FASN1), diacylglycerol O-acyltransferase 2 (DGAT2), and fatty acid binding protein 4 (FABP4) were significantly up-regulated in backfat tissue, while the expression of proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase 2 (CPT2), both involved in fatty acid oxidation, was reduced. In liver tissue, HF feeding significantly elevated the expression of SREBP-1c, FASN1, DGAT2, and hepatocyte nuclear factor-4α (HNF-4α) mRNAs. Microarray analysis further showed that the HF diet had a significant effect on the expression of 576 genes. Among these, 108 genes were related to 21 pathways, with 20 genes involved in adiposity deposition and 26 related to immune response. Our results suggest that an HF diet can induce genetically lean pigs into obesity with body fat mass expansion and adipose-related inflammation.

Journal ArticleDOI
TL;DR: Preliminary results suggest a putative association between MTTP, DGAT2 and FASN and the FA content in both fat and meat, whereas between DGAT1, SCD and H-FABP the association was found in adipose tissue only.

Journal ArticleDOI
TL;DR: In this article, anhydrobiotic tardigrades (micro-animals also known as water bears) possess many genes of secretory abundant heat soluble (SAHS) proteins unique to Tardigrada.
Abstract: Though anhydrobiotic tardigrades (micro-animals also known as water bears) possess many genes of secretory abundant heat soluble (SAHS) proteins unique to Tardigrada, their functions are unknown. A previous crystallographic study revealed that a SAHS protein (RvSAHS1) from one of the toughest tardigrades, Ramazzottius varieornatus, has a β-barrel architecture similar to fatty acid binding proteins (FABPs) and two putative ligand binding sites (LBS1 and LBS2) where fatty acids can bind. However, some SAHS proteins such as RvSAHS4 have different sets of amino acid residues at LBS1 and LBS2, implying that they prefer other ligands and have different functions. Here RvSAHS4 was crystallized and analyzed under a condition similar to that for RvSAHS1. There was no electron density corresponding to a fatty acid at LBS1 of RvSAHS4, where a putative fatty acid was observed in RvSAHS1. Instead, LBS2 of RvSAHS4, which was composed of uncharged residues, captured a putative polyethylene glycol molecule. These results suggest that RvSAHS4 mainly uses LBS2 for the binding of uncharged molecules.

Journal ArticleDOI
TL;DR: The results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.
Abstract: Glioblastoma multiforme (GBM) is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP) are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs) are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054) between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4%) in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.

Journal ArticleDOI
Er-Du Ren1, Xiaoyun Chen1, S. Yu1, Jumei Xu1, Y. Su1, Weiyun Zhu1 
20 Feb 2018-Animal
TL;DR: It is suggested that a short-term intravenous infusion of SB could modulate hepatic lipid metabolism by decreasing fatty acid oxidation and increasing fatty acid transportation and cholesterol metabolism.
Abstract: Previous studies showed that butyrate played benefit roles in the health and metabolism of animals. However, little information on the effects of butyrate on the metabolism of piglets at the extraintestinal level is available. The present study investigated transcriptomic and metabolomic responses in the livers of pigs to evaluate the effects of intravenous sodium butyrate (SB) on the body's metabolism at the extraintestinal level. A total of 12 Duroc×Landrace×Large White growing barrows (60 days of age) fitted with jugular vein cannula were randomly allocated to either the SB group or the control (CO) group. Pigs in the SB group were intravenously infused with 10 ml SB (200 mmol/l) for 7 days, whereas pigs in the CO group were treated with the same amount of saline. The livers of pigs were collected for gene expression and metabolome analyses. The RNA sequencing (RNA-Seq) analysis showed that the mRNA expression of Acyl-CoA synthetase long-chain family member 1 (ACSL1), carnitine palmitoyltransferase 1A (CPT1A), acetyl-CoA acyltransferase 2 (ACAA2) and phosphoenolpyruvate carboxykinase 1 (PCK1) were downregulated (Q<0.05), whereas fatty acid binding protein 1 (FABP1) and cytochrome P450 family 7 subfamily A member 1 (CYP7A1) were upregulated (P<0.05) by SB treatment, indicating a decrease in fatty acid oxidation and gluconeogenesis and an increase in fatty acid transportation and cholesterol metabolism. Gas chromatography-mass spectrometry analysis showed that raffinose was enriched in the SB group compared with the CO group, indicating a decrease in metabolism of galactose. Moreover, SB treatment significantly decreased the concentration of blood cholesterol. The results suggest that a short-term intravenous infusion of SB could modulate hepatic lipid metabolism by decreasing fatty acid oxidation and increasing fatty acid transportation and cholesterol metabolism.

Journal ArticleDOI
TL;DR: It is demonstrated that DHA can increase BBB expression of FABP5, as well as fatty acid transporters, overall increasing brain DHA levels.
Abstract: The cytoplasmic trafficking of docosahexaenoic acid (DHA), a cognitively beneficial fatty acid, across the blood-brain barrier (BBB) is governed by fatty acid-binding protein 5 (FABP5). Lower levels of brain DHA have been observed in Alzheimer's disease (AD), which is associated with diminished BBB expression of FABP5. Therefore, up-regulating FABP5 expression at the BBB may be a novel approach for enhancing BBB transport of DHA in AD. DHA supplementation has been shown to be beneficial in various mouse models of AD, and therefore, the aim of this study was to determine whether DHA has the potential to up-regulate the BBB expression of FABP5, thereby enhancing its own uptake into the brain. Treating human brain microvascular brain endothelial (hCMEC/D3) cells with the maximum tolerable concentration of DHA (12.5 μM) for 72 h resulted in a 1.4-fold increase in FABP5 protein expression. Associated with this was increased expression of fatty acid transport proteins 1 and 4. To study the impact of dietary DHA supplementation, 6- to 8-week-old C57BL/6 mice were fed with a control diet or a DHA-enriched diet for 21 days. Brain microvascular FABP5 protein expression was up-regulated 1.7-fold in mice fed the DHA-enriched diet, and this was associated with increased brain DHA levels (1.3-fold). Despite an increase in brain DHA levels, reduced BBB transport of 14 C-DHA was observed over a 1 min perfusion, possibly as a result of competitive binding to FABP5 between dietary DHA and 14 C-DHA. This study has demonstrated that DHA can increase BBB expression of FABP5, as well as fatty acid transporters, overall increasing brain DHA levels.

Journal ArticleDOI
01 Jan 2018-Lipids
TL;DR: Findings indicate that T94A-induced alterations in the hepatic EC system contribute at least in part to the hepatics accumulation of lipids associated with NAFLD, especially in males.
Abstract: Hepatic endocannabinoids (EC) and their major binding/"chaperone" protein (i.e., liver fatty acid binding protein-1 [FABP1]) are associated with development of nonalcoholic fatty liver (NAFLD) in animal models and humans. Since expression of the highly prevalent human FABP1 T94A variant induces serum lipid accumulation, it is important to determine its impact on hepatic lipid accumulation and the EC system. This issue was addressed in livers from human subjects expressing only wild-type (WT) FABP1 T94T (TT genotype) or T94A variant (TC or CC genotype). WT FABP1 males had lower total lipids (both neutral cholesteryl esters, triacylglycerols) and phospholipids than females. WT FABP1 males' lower lipids correlated with lower levels of the N-acylethanolamide DHEA and 2-monoacylglycerols (2-MAG) (2-OG, 2-PG). T94A expression in males increased the hepatic total lipids (triacylglycerol, cholesteryl ester), which is consistent with their higher level of CB1-potentiating 2-OG and lower antagonistic EPEA. In contrast, in females, T94A expression did not alter the total lipids, neutral lipids, or phospholipids, which is attributable to the higher cannabinoid receptor-1 (CB1) agonist arachidonoylethanolamide (AEA) and its CB1-potentiator OEA being largely offset by reduced potentiating 2-OG and increased antagonistic EPEA. Taken together, these findings indicate that T94A-induced alterations in the hepatic EC system contribute at least in part to the hepatic accumulation of lipids associated with NAFLD, especially in males.

Journal ArticleDOI
TL;DR: The distribution of FABP is demonstrated in the adult human SVZ and fetal ventricular zone and its expression on persistent radial glia that may be involved in adult neurogenesis is revealed to highlight the species-specific expression profile of F ABPs in the SVZ.
Abstract: Fatty acid-binding proteins (FABPs) are a family of transport proteins that facilitate intracellular transport of fatty acids. Despite abundant expression in the brain, the role that FABPs play in the process of cell proliferation and migration in the subventricular zone (SVZ) remains unclear. Our results provide a detailed characterisation of FABP3, 5, and 7 expression in adult and fetal human and sheep SVZ. High FABP5 expression was specifically observed in the adult human SVZ and co-labelled with polysialylated neural cell adhesion molecule (PSA-NCAM), glial fibrillary acidic protein (GFAP), GFAPδ, and proliferating cell nuclear antigen (PCNA), indicating a role for FABP5 throughout the full maturation process of astrocytes and neuroblasts. Some FABP5+ cells had a radial glial-like appearance and co-labelled with the radial glia markers vimentin (40E-C) and GFAP. In the fetal human brain, FABP5 was expressed by radial glia cells throughout the ventricular zone. In contrast, radial glia-like cells in sheep highly expressed FABP3. Taken together, these differences highlight the species-specific expression profile of FABPs in the SVZ. In this study, we demonstrate the distribution of FABP in the adult human SVZ and fetal ventricular zone and reveal its expression on persistent radial glia that may be involved in adult neurogenesis.