scispace - formally typeset
Search or ask a question

Showing papers on "Fracture toughness published in 2015"


Journal ArticleDOI
TL;DR: A synergy of multiple deformation mechanisms is identified, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations.
Abstract: Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼ 1 GPa, excellent ductility (∼ 60-70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.

575 citations


Journal ArticleDOI
TL;DR: A large variety of data comprised of the mechanical properties of nanomaterial toughened composites reported to date has been compiled to facilitate the evolution of this emerging field, and the results are presented in maps showing the effect of nanoparticle loading on mode I fracture toughness, stiffness and strength.
Abstract: The incorporation of nanomaterials in the polymer matrix is considered to be a highly effective technique to improve the mechanical properties of resins. In this paper the effects of the addition of different nanoparticles such as single-walled CNT (SWCNT), double-walled CNT (DWCNT), multi-walled CNT (MWCNT), graphene, nanoclay and nanosilica on fracture toughness, strength and stiffness of the epoxy matrix have been reviewed. The Young's modulus (E), ultimate tensile strength (UTS), mode I (GIC) and mode II (GIIC) fracture toughness of the various nanocomposites at different nanoparticle loadings are compared. The review shows that, depending on the type of nanoparticles, the integration of the nanoparticles has a substantial effect on mode I and mode II fracture toughness, strength and stiffness. The critical factors such as maintaining a homogeneous dispersion and good adhesion between the matrix and the nanoparticles are highlighted. The effect of surface functionalization, its relevancy and toughening mechanism are also scrutinized and discussed. A large variety of data comprised of the mechanical properties of nanomaterial toughened composites reported to date has thus been compiled to facilitate the evolution of this emerging field, and the results are presented in maps showing the effect of nanoparticle loading on mode I fracture toughness, stiffness and strength.

567 citations


Journal ArticleDOI
TL;DR: In this article, a phase-field model for ductile fracture of elasto-plastic solids in the quasi-static kinematically linear regime is proposed, which captures the entire range of behavior of a ductile material exhibiting $$J_2$$J2-PLasticity, encompassing plasticization, crack initiation, propagation and failure.
Abstract: Phase-field modeling of brittle fracture in elastic solids is a well-established framework that overcomes the limitations of the classical Griffith theory in the prediction of crack nucleation and in the identification of complicated crack paths including branching and merging. We propose a novel phase-field model for ductile fracture of elasto-plastic solids in the quasi-static kinematically linear regime. The formulation is shown to capture the entire range of behavior of a ductile material exhibiting $$J_2$$J2-plasticity, encompassing plasticization, crack initiation, propagation and failure. Several examples demonstrate the ability of the model to reproduce some important phenomenological features of ductile fracture as reported in the experimental literature.

522 citations


Journal ArticleDOI
TL;DR: In this article, a generalization of recently developed continuum phase field models from brittle to ductile fracture coupled with thermo-plasticity at finite strains is presented, which uses a geometric approach to the diffusive crack modeling based on the introduction of a balance equation for a regularized crack surface.

407 citations


Journal ArticleDOI
TL;DR: A comprehensive view of the state-of-the-art research on various aspects of the fracture of bulk metallic glasses, including fracture behavior and characteristics, fracture mode, fracture criterion, fracture toughness, and fracture morphology, is presented in this article.

391 citations


Journal ArticleDOI
TL;DR: In this paper, a phenomenological fracture initiation model for metals is developed for predicting ductile fracture in industrial practice based on the assumption that the onset of fracture is imminent with the formation of a primary or secondary band of localization.

369 citations


Journal ArticleDOI
TL;DR: In this article, a microcrack mechanism was proposed based on microscopy of the fracture surfaces, which indicated that the coalescence of microcracks may facilitate crack propagation, lowering the fracture toughness.
Abstract: The toughening effects of graphene and graphene-derived materials on thermosetting epoxies are investigated. Graphene materials with various structures and surface functional groups are incorporated into an epoxy resin by in situ polymerization. Graphene oxide (GO) and GO modified with amine-terminated poly(butadiene-acrylonitrile) (ATBN) are chosen to improve the dispersion of graphene nanosheets in epoxy and increase their interfacial adhesion. An impressive toughening effect is observed with less than 0.1 wt% graphene. A maximum in toughness at loadings as small as 0.02 wt% or 0.04 wt% is observed for all four types of graphene studied. An epoxy nanocomposite with ATBN-modified GO shows a 1.5-fold improvement in fracture toughness and a corresponding 2.4-fold improvement in fracture energy at 0.04 wt% of graphene loading. At such low loadings, these graphene-type materials become economically feasible components of nanocomposites. A microcrack mechanism is proposed based on microscopy of the fracture surfaces. Due to the stress concentration by graphene nanosheets, microcracks may be formed to absorb the fracture energy. However, above a certain graphene concentration, the coalescence of microcracks appears to facilitate crack propagation, lowering the fracture toughness. Crack defl ection and pinning likely contribute to the slow increase in fracture toughness at higher loadings.

300 citations


Journal ArticleDOI
01 Nov 2015-Carbon
TL;DR: In this article, an alternating-current electric field was used to align graphene nanoplatelets (GnPs) in an epoxy polymer, and the resulting nanocomposites exhibit anisotropic properties with significantly improved electrical and thermal conductivities.

277 citations


Journal ArticleDOI
TL;DR: In this article, the fracture toughness and fatigue crack growth rate properties of selective laser melted (SLM) specimens produced from grade 5 Ti6Al4V powder metal have been investigated and three specimen orientations relative to the build direction as well as two different post-build heat treatments were considered.
Abstract: The fracture toughness (K 1c ) and fatigue crack growth rate (FCGR) properties of selective laser melted (SLM) specimens produced from grade 5 Ti6Al4V powder metal has been investigated. Three specimen orientations relative to the build direction as well as two different post-build heat treatments were considered. Specimens and test procedures were designed in accordance with ASTM E399 and ASTM E647 standard. The results show that there is a strong influence of post-build processing (heat treated versus ‘as built’) as well as specimen orientation on the dynamic behaviour of SLM produced Ti6Al4V. The greatest improvement in properties after heat treatment was demonstrated when the fracture plane is perpendicular to the SLM build direction. This behaviour is attributed to the higher anticipated influence of tensile residual stress for this orientation. The transformation of the initial rapidly solidified microstructure during heat treatment has a smaller beneficial effect on improving mechanical properties.

263 citations


Journal ArticleDOI
TL;DR: 3D interconnected graphene aerogels are prepared through one-step chemical reduction and rational assembly of graphene oxide (GO) sheets, so that the difficulties to uniformly disperse the individual graphene sheets in the polymer matrixes are avoided.
Abstract: 3D interconnected graphene aerogels (GAs) are prepared through one-step chemical reduction and rational assembly of graphene oxide (GO) sheets, so that the difficulties to uniformly disperse the individual graphene sheets in the polymer matrixes are avoided. Apart from ultralow density, high porosity, high electrical conductivity, and excellent compressibility, the resulting GAs possess a cellular architecture with a high degree of alignment when the graphene content is above a threshold, ∼0.5 wt %. The composites prepared by infiltrating GA with epoxy resin present excellent electrical conductivities, together with high mechanical properties and fracture toughness. The unusual anisotropic structure gives rise to ∼67% and ∼113% higher electrical conductivity and fracture toughness of the composites, respectively, in the alignment direction than that transverse to it.

241 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the potential of alternative degradation functions in the context of crack nucleation and propagation, which is not desirable when modeling brittle materials, as the degradation function frequently found in the literature yields a pronounced softening behavior before the onset of fracture.

Journal ArticleDOI
TL;DR: In this paper, a peridynamic model for dynamic fracture in brittle homogeneous and isotropic materials is presented, and three loading types are used to investigate the role of stress waves interactions on crack propagation and branching.
Abstract: In this paper we review the peridynamic model for brittle fracture and use it to investigate crack branching in brittle homogeneous and isotropic materials. The peridynamic simulations offer a possible explanation for the generation of dynamic instabilities in dynamic brittle crack growth and crack branching. We focus on two systems, glass and homalite, often used in crack branching experiments. After a brief review of theoretical and computational models on crack branching, we discuss the peridynamic model for dynamic fracture in linear elastic–brittle materials. Three loading types are used to investigate the role of stress waves interactions on crack propagation and branching. We analyze the influence of sample geometry on branching. Simulation results are compared with experimental ones in terms of crack patterns, propagation speed at branching and branching angles. The peridynamic results indicate that as stress intensity around the crack tip increases, stress waves pile-up against the material directly in front of the crack tip that moves against the advancing crack; this process “deflects” the strain energy away from the symmetry line and into the crack surfaces creating damage away from the crack line. This damage “migration”, seen as roughness on the crack surface in experiments, modifies, in turn, the strain energy landscape around the crack tip and leads to preferential crack growth directions that branch from the original crack line. We argue that nonlocality of damage growth is one key feature in modeling of the crack branching phenomenon in brittle fracture. The results show that, at least to first order, no ingredients beyond linear elasticity and a capable damage model are necessary to explain/predict crack branching in brittle homogeneous and isotropic materials.

Journal ArticleDOI
TL;DR: The synthesis of unoxidized graphene/alumina composite materials having enhanced toughness, strength, and wear-resistance by a low-cost and environmentally benign pressure-less-sintering process is reported on.
Abstract: It is of critical importance to improve toughness, strength, and wear-resistance together for the development of advanced structural materials. Herein, we report on the synthesis of unoxidized graphene/alumina composite materials having enhanced toughness, strength, and wear-resistance by a low-cost and environmentally benign pressure-less-sintering process. The wear resistance of the composites was increased by one order of magnitude even under high normal load condition (25 N) as a result of a tribological effect of graphene along with enhanced fracture toughness (KIC) and flexural strength (σf) of the composites by ~75% (5.60 MPa·m1/2) and ~25% (430 MPa), respectively, compared with those of pure Al2O3. Furthermore, we found that only a small fraction of ultra-thin graphene (0.25–0.5 vol%, platelet thickness of 2–5 nm) was enough to reinforce the composite. In contrast to unoxidized graphene, graphene oxide (G-O) and reduced graphene oxide (rG-O) showed little or less enhancement of fracture toughness due to the degraded mechanical strength of rG-O and the structural defects of the G-O composites.

Journal ArticleDOI
TL;DR: In this article, the effects of interleaved nanofibre veils on the Mode I and Mode II interlaminar fracture toughness (ILFT) of autoclave cured unidirectional carbon/epoxy composite laminates were investigated.
Abstract: In this study, the effects of interleaved nanofibre veils on the Mode I and Mode II interlaminar fracture toughness (ILFT) of autoclave cured unidirectional carbon/epoxy composite laminates were investigated. Various electrospun nanofibre veils consisting of a range of different polymer types, fibre diameters and veil architectures were placed in the laminate mid-planes, which were subsequently subjected to double cantilever beam and end-notch flexure tests. It was found that the polymer type and veil areal weight were the most important factors contributing to laminate performance. A 4.5 g/m 2 PA66 veil provided the best all-round performance with fracture toughness improvements of 156% and 69% for Mode I and Mode II, respectively.

Journal ArticleDOI
TL;DR: In this article, the effect of stress state and loading path on the ductile fracture of aluminum 2024-T351 is characterized through tension-torsion experiments on tubular specimens.

Journal ArticleDOI
TL;DR: In this article, Semicircular bend tests on Marcellus Shale core samples containing calcite-filled natural fractures (veins) were performed to investigate the influence of weak planes on hydraulic fracture propagation.
Abstract: Field observations show that hydraulic fracture growth in naturally fractured formations like shale is complex. Preexisting discontinuities in shale, including natural fractures and bedding, act as planes of weakness that divert fracture propagation. To investigate the influence of weak planes on hydraulic fracture propagation, we performed Semicircular Bend tests on Marcellus Shale core samples containing calcite-filled natural fractures (veins). The approach angle of the induced fracture to the veins and the thickness of the veins have a strong influence on propagation. As the approach angle becomes more oblique to the induced fracture plane, and as the vein gets thicker, the induced fracture is more likely to divert into the vein. Microstructural analysis of tested samples shows that the induced fracture propagates in the middle of the vein but not at the interface between the vein and the rock matrix. Cleavage planes and fluid inclusion trails in the vein cements exert some control on the fracture path. Combining the experimental results with theoretical fracture mechanics arguments, the fracture toughness of the calcite veins was estimated to range from 0.24 MPa m1/2 to 0.83 MPa m1/2, depending on the value used for the Young's modulus of the calcite vein material. Measured fracture toughness of unfractured Marcellus Shale was 0.47 MPa m1/2.

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods including techniques based on micro-cantilever, beam bending and micro-pillar splitting.
Abstract: In this paper, we describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods including techniques based on micro-cantilever, beam bending and micro-pillar splitting. A critical comparison of the techniques is made by testing a selected group of bulk and thin film materials. For pillar splitting, cohesive zone finite element simulations are used to validate a simple relationship between the critical load at failure, the pillar radius, and the fracture toughness for a range of material properties and coating/substrate combinations. The minimum pillar diameter required for nucleation and growth of a crack during indentation is also estimated. An analysis of pillar splitting for a film on a dissimilar substrate material shows that the critical load for splitting is relatively insensitive to the substrate compliance for a large range of material properties. Experimental results from a selected group of materials show good agreement between single cantilever and pillar splitting methods, while a discrepancy of ∼25% is found between the pillar splitting technique and double-cantilever testing. It is concluded that both the micro-cantilever and pillar splitting techniques are valuable methods for micro-scale assessment of fracture toughness of brittle ceramics, provided the underlying assumptions can be validated. Although the pillar splitting method has some advantages because of the simplicity of sample preparation and testing, it is not applicable to most metals because their higher toughness prevents splitting, and in this case, micro-cantilever bend testing is preferred.

Journal ArticleDOI
01 Jun 2015-Polymer
TL;DR: In this paper, a DGEBA epoxy resin cured using dicyandiamide hardener, was modified by using two types of CSR nano-particles over a range of volume fractions from 0.% to 38.%.

Journal ArticleDOI
TL;DR: In this paper, the authors used molecular dynamics simulations to evaluate the fracture toughness of C-S-H and showed that the material breaks in a ductile way, which prevents one from using methods based on linear elastic fracture mechanics.
Abstract: Concrete is the most widely manufactured material in the world. Its binding phase, calcium–silicate–hydrate (C–S–H), is responsible for its mechanical properties and has an atomic structure fairly similar to that of usual calcium silicate glasses, which makes it appealing to study this material with tools and theories traditionally used for non-crystalline solids. Here, following this idea, we use molecular dynamics simulations to evaluate the fracture toughness of C–S–H, inaccessible experimentally. This allows us to discuss the brittleness of the material at the atomic scale. We show that, at this scale, C–S–H breaks in a ductile way, which prevents one from using methods based on linear elastic fracture mechanics. Knowledge of the fracture properties of C–S–H at the atomic scale opens the way for an upscaling approach to the design of tougher cement paste, which would allow for the design of slender environment-friendly infrastructures, requiring less material.

Journal ArticleDOI
TL;DR: Fracture is one of the most prominent concerns for large scale applications of graphene as mentioned in this paper, and a review of the recent progresses in experimental and theoretical studies on the fracture behaviors of graphene can be found in this paper.
Abstract: Fracture is one of the most prominent concerns for large scale applications of graphene. In this paper, we review some of the recent progresses in experimental and theoretical studies on the fracture behaviors of graphene, with discussions touching theoretical strength, mode I fracture toughness, mixed mode fracture, chemical fracture, irradiation fracture, dynamic fracture, impact fracture, and sonication fracture. In spite of rapid developments in experiments and simulations, there are still significant yet unresolved issues related to the fracture of graphene, examples including: (1) Can one enhance the toughness of graphene with designed topological defects? (2) How does grain size affect the strength of polycrystalline graphene? (3) How do the out-of-plane effects (e.g., wrinkle caused by external loading or curvature induced by topological defects) influence the fracture of graphene? (4) Can one develop a continuum model with the ability to capture graphene fracture with complicated modes, such as shear fracture coupled with wrinkling deformation and tear fracture? (5) How does fracture occur when tearing a polycrystalline graphene sheet? (6) Can one control the fracture behavior of graphene by combing the chemical, irradiation and stress effect? (7) How fast can cracks propagate in graphene? (8) What is the behavior of interfacial cracks in graphene, i.e., cracks along the grain boundaries or interfaces of heterogeneous structures? (9) How does a multilayer graphene membrane break under high speed impact and why such structures can absorb a large amount of kinetic energy? (10) Can one tailor/design the graphene structures with controlled fracture? The intention here is not to provide complete answers to such questions, but to draw attention from the mechanics community to them as potential research topics.

Journal ArticleDOI
TL;DR: It is unambiguously shown that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions, and the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials.
Abstract: Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

Journal ArticleDOI
TL;DR: In this article, the Edge Notched Disc Bend (ENDB) is proposed for experimental determination of KIIIc, which is a circular disc containing an edge crack created along the disc diameter which is subjected to three-point bend loading.

Journal Article
TL;DR: In this paper, the effects of interleaved nanofibre veils on the Mode I and Mode II interlaminar fracture toughness (ILFT) of autoclave cured unidirectional carbon/epoxy composite laminates were investigated.

Journal ArticleDOI
TL;DR: In this article, a review of atomistic aspects of fracture in crystalline materials where significant advances have been achieved over the last ten years and provides an outlook on future perspectives for atomistic modelling of fracture.
Abstract: Any fracture process ultimately involves the rupture of atomic bonds. Processes at the atomic scale therefore critically influence the toughness and overall fracture behavior of materials. Atomistic simulation methods including large-scale molecular dynamics simulations with classical potentials, density functional theory calculations and advanced concurrent multiscale methods have led to new insights e.g. on the role of bond trapping, dynamic effects, crack-microstructure interactions and chemical aspects on the fracture toughness and crack propagation patterns in metals and ceramics. This review focuses on atomistic aspects of fracture in crystalline materials where significant advances have been achieved over the last ten years and provides an outlook on future perspectives for atomistic modelling of fracture.

Journal ArticleDOI
TL;DR: In this article, the influence of graphene reinforcement on the sintering process, microstructure, and mechanical properties (Vickers hardness and fracture toughness) of ZrB2-SiC composite is discussed.
Abstract: In this paper, the hot pressing of monolithic ZrB2 ceramic (Z), ZrB2–25 vol% SiC composite (ZS), as well as 5 wt% graphene reinforced ZrB2–25 vol% SiC composite (ZSG) is investigated. The hot pressing at 1850 1C for 60 min under a uniaxial pressure of 20 MPa resulted in a near fully-dense ZSG composite (499% relative density). In addition, the influence of graphene reinforcement on the sintering process, microstructure, and mechanical properties (Vickers hardness and fracture toughness) of ZrB2–SiC composite is discussed. It was disclosed that the grain growth of the ZrB2 matrix was effectively stopped by SiC particles and graphene nano-platelets. The fracture toughness of ZSG composite (6.4 MPa m 1/2 ) was strongly enhanced by incorporating the mentioned reinforcements into the ZrB2 matrix, which is higher than that of Z ceramic (1.8 MPa m 1/2 ) and ZS composite (4.3 MPa m 1/2 ). After the hot pressing process, the fractographical outcomes revealed that some graphene nano-platelets were kept in the composite microstructure, apart from SiC grains, which lead to the toughening of the composite through graphene nano-platelets wrapping and pull out, crack deflection, and crack bridging. & 2014 Elsevier B.V. All rights reserved.

Journal ArticleDOI
26 Aug 2015-JOM
TL;DR: The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al 0.2CrFeNiTi0.2 and Al CrFeNi2Cu) were determined in this paper.
Abstract: The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

Journal ArticleDOI
TL;DR: In this article, a fly ash-based engineered geopolymer composite (EGC) with relatively low-concentration activator combinations was used to improve the mechanical properties of the composite.
Abstract: This paper is aimed to improve the mechanical properties (namely compressive and tensile strengths) of a recently developed fly ash-based engineered geopolymer composite (EGC) with relatively low-concentration activator combinations. In this regard, four different activator combinations (including two Na-based solutions and one K-based activator solution, and one lime-based activator combination in the form of powder) were used to develop the fly ash-based EGCs exhibiting strain hardening behavior under uniaxial tension. Randomly oriented short polyvinyl alcohol (PVA) fibers (2% v/v) were used to reinforce the relatively brittle low-calcium (Class F) fly ash-based geopolymer matrix. The matrix and composite properties of the developed fly ash-based EGCs [including workability of the fresh matrix, density, compressive strength, matrix fracture properties (comprising elastic modulus, fracture toughness, and composite crack tip toughness), and uniaxial tensile behavior] were evaluated. A counterpart ...

Journal ArticleDOI
TL;DR: In this paper, four different fracture toughness test geometries in practice, all of them micromachined in the focused ion beam (FIB), were investigated to investigate the fracture toughness of Si(100) at the micrometer scale.
Abstract: Fracture toughness testing of materials at the micrometer scale has become essential due to the continuing miniaturization of devices accompanied by findings of size effects in fracture behavior. Many techniques have emerged in the recent past to carry out fracture toughness measurements at the relevant micro and nanolength scales, but they lack ASTM standards that are prescribed for bulk scale tests. Also, differences in reported values arise at the microscale due to the sample preparation technique, test method, geometry, and investigator. To correct for such discrepancies, we chose four different fracture toughness test geometries in practice, all of them micromachined in the focused ion beam (FIB), to investigate the fracture toughness of Si(100) at the micrometer scale. The average KIC that emerges from all four cases is a constant (0.8 MPa m1/2). The advantages and limitations of each of these geometries in terms of test parameters and the range of materials that can be tested are discussed.

Journal ArticleDOI
TL;DR: In this paper, a broad study of Portland cement mortar mixtures containing silica fume, plain or silica-functionalized carbon nanotubes, and carbon fibers was performed to characterize changes in fracture properties.
Abstract: Fiber reinforcements provide many benefits to cementitious composites, including reduction of crack widths and increases in ductility. However, the interfacial transition zone between fibers and hydrated cement can contain a high proportion of calcium hydroxide and porosity. With their high moduli of elasticity, carbon nanotubes and carbon fibers could provide substantial mechanical reinforcement at multiple length scales, but only if their bond to the matrix can be controlled. Surface treatments of fibers and addition of supplemental materials in the matrix can influence both the mechanical interaction at the interface and the dispersion of these relatively small reinforcements. We performed a broad study of Portland cement mortar mixtures containing silica fume, plain or silica-functionalized carbon nanotubes, and carbon fibers to characterize changes in fracture properties. The early age hydration kinetics of cement pastes containing carbon nanotubes were compared using isothermal calorimetry. Early age fracture surfaces of cement pastes containing carbon fibers were observed using a scanning electron microscope. The notched beam test method of the Two Parameter Fracture Model was used to determine the fracture properties of each mix. We observed that silica fume and silica functional groups improved the fracture performance of mixtures containing carbon nanotubes and carbon fibers. Further optimization of dosage, size, and interface strength is required to fully utilize carbon nanotubes in cementitious composites.

Journal ArticleDOI
TL;DR: In this article, stoichiometric lithium disilicate glasses were used as a model system and crystallized using carefully designed and controlled two-stage heat treatments to give different crystallized volume fractions while maintaining a constant grain size of approximately 12μm.