scispace - formally typeset
Search or ask a question

Showing papers on "Image registration published in 2016"


Journal ArticleDOI
TL;DR: A learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data that scales well to new image modalities or new image applications with little to no human intervention.
Abstract: Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

281 citations


Journal ArticleDOI
TL;DR: It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects.

248 citations


Journal ArticleDOI
TL;DR: Experimental results show that the learning-based method proposed can accurately predict CT images in various scenarios, even for the images undergoing large shape variation, and also outperforms two state-of-the-art methods.
Abstract: Computed tomography (CT) imaging is an essential tool in various clinical diagnoses and radiotherapy treatment planning. Since CT image intensities are directly related to positron emission tomography (PET) attenuation coefficients, they are indispensable for attenuation correction (AC) of the PET images. However, due to the relatively high dose of radiation exposure in CT scan, it is advised to limit the acquisition of CT images. In addition, in the new PET and magnetic resonance (MR) imaging scanner, only MR images are available, which are unfortunately not directly applicable to AC. These issues greatly motivate the development of methods for reliable estimate of CT image from its corresponding MR image of the same subject. In this paper, we propose a learning-based method to tackle this challenging problem. Specifically, we first partition a given MR image into a set of patches. Then, for each patch, we use the structured random forest to directly predict a CT patch as a structured output, where a new ensemble model is also used to ensure the robust prediction. Image features are innovatively crafted to achieve multi-level sensitivity, with spatial information integrated through only rigid-body alignment to help avoiding the error-prone inter-subject deformable registration. Moreover, we use an auto-context model to iteratively refine the prediction. Finally, we combine all of the predicted CT patches to obtain the final prediction for the given MR image. We demonstrate the efficacy of our method on two datasets: human brain and prostate images. Experimental results show that our method can accurately predict CT images in various scenarios, even for the images undergoing large shape variation, and also outperforms two state-of-the-art methods.

238 citations


Journal ArticleDOI
TL;DR: The paper presents a description of the common diagnostic images along with the main characteristics of each of them and the current challenges associated with working with medical image registration and fusion through illustrating the recent diseases/disorders that were addressed through such an analyzing process.

150 citations


Posted Content
TL;DR: It is well proved that as a fundamental mathematic tool, fractional-order derivative shows great success in image processing.
Abstract: Over the last decade, it has been demonstrated that many systems in science and engineering can be modeled more accurately by fractional-order than integer-order derivatives, and many methods are developed to solve the problem of fractional systems. Due to the extra free parameter order, fractional-order based methods provide additional degree of freedom in optimization performance. Not surprisingly, many fractional-order based methods have been used in image processing field. Herein recent studies are reviewed in ten sub-fields, which include image enhancement, image denoising, image edge detection, image segmentation, image registration, image recognition, image fusion, image encryption, image compression and image restoration. In sum, it is well proved that as a fundamental mathematic tool, fractional-order derivative shows great success in image processing.

143 citations


Journal ArticleDOI
TL;DR: There is substantial room for improvement in image registration for abdominal CT, due to the overall low DSC values, and substantial portion of low-performing outliers.
Abstract: Objective: This work evaluates current 3-D image registration tools on clinically acquired abdominal computed tomography (CT) scans. Methods: Thirteen abdominal organs were manually labeled on a set of 100 CT images, and the 100 labeled images (i.e., atlases) were pairwise registered based on intensity information with six registration tools (FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS). The Dice similarity coefficient (DSC), mean surface distance, and Hausdorff distance were calculated on the registered organs individually. Permutation tests and indifference-zone ranking were performed to examine the statistical and practical significance, respectively. Results: The results suggest that DEEDS yielded the best registration performance. However, due to the overall low DSC values, and substantial portion of low-performing outliers, great care must be taken when image registration is used for local interpretation of abdominal CT. Conclusion: There is substantial room for improvement in image registration for abdominal CT. Significance: All data and source code are available so that innovations in registration can be directly compared with the current generation of tools without excessive duplication of effort.

141 citations


Journal ArticleDOI
TL;DR: The groupwise registration method with a similarity measure based on PCA is the preferred technique for compensating misalignments in qMRI.

125 citations


Proceedings Article
Rui Liao1, Shun Miao1, Pierre de Tournemire1, Sasa Grbic1, Ali Kamen1, Tommaso Mansi1, Dorin Comaniciu1 
01 Jan 2016
TL;DR: In this article, an artificial agent is learned, modeled using deep convolutional neural networks, with 3D raw image data as the input, and the next optimal action as the output.
Abstract: 3-D image registration, which involves aligning two or more images, is a critical step in a variety of medical applications from diagnosis to therapy. Image registration is commonly performed by optimizing an image matching metric as a cost function. However this task is challenging due to the non-convex nature of the matching metric over the plausible registration parameter space and insufficient approches for a robust optimization. As a result, current approaches are often customized to a specific problem and sensitive to image quality and artifacts. In this paper, we propose a completely different approach to image registration, inspired by how experts perform the task. We first cast the image registration problem as a "strategic learning" process, where the goal is to find the best sequence of motion actions (e.g. up, down, etc) that yields image alignment. Within this approach, an artificial agent is learned, modeled using deep convolutional neural networks, with 3D raw image data as the input, and the next optimal action as the output. To copy with the dimensionality of the problem, we propose a greedy supervised approach for an end-to-end training, coupled with attention-driven hierarchical strategy. The resulting registration approach inherently encodes both a data-driven matching metric and an optimal registration strategy (policy). We demonstrate on two 3-D/3-D medical image registration examples with drastically different nature of challenges, that the artificial agent outperforms several state-of-the-art registration methods by a large margin in terms of both accuracy and robustness.

113 citations


Book ChapterDOI
21 Oct 2016
TL;DR: A patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters and focuses on the large deformation diffeomorphic metric mapping (LDDMM) registration model.
Abstract: We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a \(1500\mathsf {x}\)/\(66\mathsf {x}\) speed-up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D.

101 citations


Proceedings ArticleDOI
01 Oct 2016
TL;DR: This work proposes the first thermal image enhancement method based on CNN guided on RGB data, called TEN, which directly learns an end-to-end mapping a single low resolution image to the desired high resolution image.
Abstract: With the advent of commodity autonomous mobiles, it is becoming increasingly prevalent to recognize under extreme conditions such as night, erratic illumination conditions. This need has caused the approaches using multi-modal sensors, which could be complementary to each other. The choice for the thermal camera provides a rich source of temperature information, less affected by changing illumination or background clutters. However, existing thermal cameras have a relatively smaller resolution than RGB cameras that has trouble for fully utilizing the information in recognition tasks. To mitigate this, we aim to enhance the low-resolution thermal image according to the extensive analysis of existing approaches. To this end, we introduce Thermal Image Enhancement using Convolutional Neural Network (CNN), called in TEN, which directly learns an end-to-end mapping a single low resolution image to the desired high resolution image. In addition, we examine various image domains to find the best representative of the thermal enhancement. Overall, we propose the first thermal image enhancement method based on CNN guided on RGB data. We provide extensive experiments designed to evaluate the quality of image and the performance of several object recognition tasks such as pedestrian detection, visual odometry, and image registration.

101 citations


Journal ArticleDOI
TL;DR: This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking in image-guided spine surgery.
Abstract: In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE > 30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE 14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE = 5.5 mm, 2.6 mm IQR) without manual masking and with an improved runtime (29.3 s). The GO metric improved the registration accuracy and robustness in the presence of strong image content mismatch. This capability could offer valuable assistance and decision support in spine level localization in a manner consistent with clinical workflow.

Journal ArticleDOI
TL;DR: This study empirically evaluates aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters to establish a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain.
Abstract: The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain.

Journal ArticleDOI
TL;DR: An objective function that embeds local phase features derived from the monogenic signal in the modality independent neighborhood descriptor (MIND) based on the autocorrelation of local structure (ALOST) which has two important properties: low sensitivity to space-variant intensity distortions and high distinctiveness for `salient' image features such as edges.
Abstract: Registration of images in the presence of intra-image signal fluctuations is a challenging task. The definition of an appropriate objective function measuring the similarity between the images is crucial for accurate registration. This paper introduces an objective function that embeds local phase features derived from the monogenic signal in the modality independent neighborhood descriptor (MIND). The image similarity relies on the autocorrelation of local structure (ALOST) which has two important properties: 1) low sensitivity to space-variant intensity distortions (e.g., differences in contrast enhancement in MRI); 2) high distinctiveness for ‘salient’ image features such as edges. The ALOST method is quantitatively compared to the MIND approach based on three different datasets: thoracic CT images, synthetic and real abdominal MR images. The proposed method outperformed the NMI and MIND similarity measures on these three datasets. The registration of dynamic contrast enhanced and post-contrast MR images of patients with Crohn's disease led to relative contrast enhancement measures with the highest correlation $({\rm r}=0.56)$ to the Crohn's disease endoscopic index of severity.

Journal ArticleDOI
TL;DR: The results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure, and could be helpful for establishing prospective clinical trials and for the widespread use of DIRSoftware.
Abstract: Purpose To assess the accuracy of the commercially available deformable image registration (DIR) software for thoracic images at multiple institutions. Methods and Materials Thoracic 4-dimensional (4D) CT images of 10 patients with esophageal or lung cancer were used. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomic landmarks (300 bronchial bifurcations) that had been manually identified. Deformable image registration was performed between the peak-inhale and -exhale images. Deformable image registration error was determined by calculating the difference at each landmark point between the displacement calculated by DIR software and that calculated by the landmark. Results Eleven institutions participated in this study: 4 used RayStation (RaySearch Laboratories, Stockholm, Sweden), 5 used MIM Software (Cleveland, OH), and 3 used Velocity (Varian Medical Systems, Palo Alto, CA). The ranges of the average absolute registration errors over all cases were as follows: 0.48 to 1.51 mm (right-left), 0.53 to 2.86 mm (anterior-posterior), 0.85 to 4.46 mm (superior-inferior), and 1.26 to 6.20 mm (3-dimensional). For each DIR software package, the average 3-dimensional registration error (range) was as follows: RayStation, 3.28 mm (1.26-3.91 mm); MIM Software, 3.29 mm (2.17-3.61 mm); and Velocity, 5.01 mm (4.02-6.20 mm). These results demonstrate that there was moderate variation among institutions, although the DIR software was the same. Conclusions We evaluated the commercially available DIR software using thoracic 4D-CT images from multiple centers. Our results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure. Our results could be helpful for establishing prospective clinical trials and for the widespread use of DIR software. In addition, for clinical care, we should try to find the optimal DIR procedure using thoracic 4D-CT data.

Journal ArticleDOI
TL;DR: An approach that enables accurate voxel-wise deformable registration of high-resolution 3D images without the need for intermediate image warping or a multi-resolution scheme is proposed, and significant improvements in registration accuracy are shown when using the additional information provided by the registration uncertainty estimates.

Posted Content
TL;DR: In this paper, a patch-based deep encoder-decoder network is proposed to predict image deformations based on patch-wise image appearance, which achieves a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration.
Abstract: We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D.

Journal ArticleDOI
TL;DR: The authors showed that a patch-based method based on affine registrations and T1-weighted MRI could generate accurate pCTs of the pelvis and showed a significantly better performance than the baseline water pCT in almost all metrics.
Abstract: Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T 1-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairs and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T 1-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAEvox) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAEvox of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T 1-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.

Journal ArticleDOI
TL;DR: Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures.
Abstract: Benchmarking is a process in which standardized tests are used to assess system performance. The data produced in the process are important for comparative purposes, particularly when considering the implementation and quality assurance of DIR algorithms. In this work, five commercial DIR algorithms (MIM, Velocity, RayStation, Pinnacle, and Eclipse) were benchmarked using a set of 10 virtual phantoms. The phantoms were previously developed based on CT data collected from real head and neck patients. Each phantom includes a start of treatment CT dataset, an end of treatment CT dataset, and the ground-truth deformation vector field (DVF) which links them together. These virtual phantoms were imported into the commercial systems and registered through a deformable process. The resulting DVFs were compared to the ground-truth DVF to determine the target registration error (TRE) at every voxel within the image set. Real treatment plans were also recalculated on each end of treatment CT dataset and the dose transferred according to both the ground-truth and test DVFs. Dosimetric changes were assessed, and TRE was correlated with changes in the DVH of individual structures. In the first part of the study, results show mean TRE on the order of 0.5 mm to 3 mm for all phan-toms and ROIs. In certain instances, however, misregistrations were encountered which produced mean and max errors up to 6.8 mm and 22 mm, respectively. In the second part of the study, dosimetric error was found to be strongly correlated with TRE in the brainstem, but weakly correlated with TRE in the spinal cord. Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures. This information can be used to help clinicians better implement and test their algorithms, and also understand the strengths and weaknesses of a dose adaptive approach.

Journal ArticleDOI
TL;DR: This work integrates the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm, and shows an improved robustness to initial conditions, when compared with wavelet features alone.
Abstract: Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard but are sometimes not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered and then performs least-squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, although approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared with wavelet features alone.

Journal ArticleDOI
TL;DR: In this letter, a modified version of SIFT is proposed to obtain uniformly distributed matched features, and the bivariate histogram and the random sample consensus have been used to refine the initial matches.
Abstract: Uniformly distributed feature extraction and availability of a sufficient number of correctly matched points between the input images are the key challenges for remote sensing optical image registration. Because of its robustness and distinctiveness, the scale-invariant feature transform (SIFT) is a well-known approach for an automatic image registration. However, the features obtained from the SIFT algorithm are not uniformly distributed, and sometimes, the number of matched features is insufficient to provide subpixel accuracy in the registration of remote sensing optical images. In this letter, a modified version of SIFT is proposed to obtain uniformly distributed matched features. Then, the bivariate histogram and the random sample consensus have been used to refine the initial matches. Finally, a reliable matching criterion is proposed to maximize the number of matches.

Journal ArticleDOI
TL;DR: This study quantifies the RMSE of the proposed marker-free registration approach, assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and informs optimal sample spacing considerations for TLS data collection in New England forests.
Abstract: Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud data and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output $\text{RMSE}=16.3\ \text{cm}$ , improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. While the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.

Journal ArticleDOI
TL;DR: The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.
Abstract: Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE =��� 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

Journal ArticleDOI
TL;DR: This work will present its own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.

Journal ArticleDOI
TL;DR: This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms.
Abstract: Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

Journal ArticleDOI
TL;DR: The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method, and believe that the proposed method is a promising alternative to MB motion management.
Abstract: Purpose: To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Methods: Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. Results: The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. Conclusions: The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management.

Proceedings ArticleDOI
07 Mar 2016
TL;DR: This paper presents the Extended Coherent Point Drift registration algorithm, which enables to couple correspondence priors into the dense registration procedure in a closed form and to process large point sets in reasonable time through adopting an optimal coarse-to-fine strategy.
Abstract: The problem of dense point set registration, given a sparse set of prior correspondences, often arises in computer vision tasks. Unlike in the rigid case, integrating prior knowledge into a registration algorithm is especially demanding in the non-rigid case due to the high variability of motion and deformation. In this paper we present the Extended Coherent Point Drift registration algorithm. It enables, on the one hand, to couple correspondence priors into the dense registration procedure in a closed form and, on the other hand, to process large point sets in reasonable time through adopting an optimal coarse-to-fine strategy. Combined with a suitable keypoint extractor during the preprocessing step, our method allows for non-rigid registrations with increased accuracy for point sets with structured outliers. We demonstrate advantages of our approach against other non-rigid point set registration methods in synthetic and real-world scenarios.

Journal ArticleDOI
TL;DR: There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.
Abstract: Purpose The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment.

Journal ArticleDOI
TL;DR: No significant difference was identified between rigid and elastic registration for MRI-TRUS fusion-guided biopsy in the detection of CSPCa; however, both techniques detected more csPCa than TRUS-guidedBiopsy alone.
Abstract: Context The main difference between the available magnetic resonance imaging-transrectal ultrasound (MRI-TRUS) fusion platforms for prostate biopsy is the method of image registration being either rigid or elastic. As elastic registration compensates for possible deformation caused by the introduction of an ultrasound probe for example, it is expected that it would perform better than rigid registration. Objective The aim of this meta-analysis is to compare rigid with elastic registration by calculating the detection odds ratio (OR) for both subgroups. The detection OR is defined as the ratio of the odds of detecting clinically significant prostate cancer (csPCa) by MRI-TRUS fusion biopsy compared with systematic TRUS biopsy. Secondary objectives were the OR for any PCa and the OR after pooling both registration techniques. Evidence acquisition The electronic databases PubMed, Embase, and Cochrane were systematically searched for relevant studies according to the Preferred Reporting Items for Systematic Review and Meta-analysis Statement. Studies comparing MRI-TRUS fusion and systematic TRUS-guided biopsies in the same patient were included. The quality assessment of included studies was performed using the Quality Assessment of Diagnostic Accuracy Studies version 2. Evidence synthesis Eleven papers describing elastic and 10 describing rigid registration were included. Meta-analysis showed an OR of csPCa for elastic and rigid registration of 1.45 (95% confidence interval [CI]: 1.21–1.73, p p =0.83). Pooling subgroups resulted in an OR of 1.43 (95% CI: 1.25–1.63, p Conclusions No significant difference was identified between rigid and elastic registration for MRI-TRUS fusion-guided biopsy in the detection of csPCa; however, both techniques detected more csPCa than TRUS-guided biopsy alone. Patient summary We did not identify any significant differences in prostate cancer detection between two distinct magnetic resonance imaging-transrectal ultrasound fusion systems which vary in their method of compensating for prostate deformation.

Journal ArticleDOI
TL;DR: In this paper, an investigation of interference effects leading to limitations of metrological performance of X-ray computed tomography (CT) used as a coordinate measuring technique is presented.
Abstract: In this paper an investigation of interference effects leading to limitations of metrological performance of X-ray computed tomography (CT) used as a coordinate measuring technique is presented. Using reconstruction data, image quality metrics, and calculations of artifact formation, a deeper understanding and explanation of the physical and technical limitations of CT used in dimensional metrology is given. This is demonstrated in a case study using a simple hollow cylinder made of steel as a test object and calibration measurements from a tactile coordinate measuring machine (CMM). Two different threshold determination strategies for surface computation are applied. Within the study it is also shown that CT image properties, threshold determination strategies, and systematic and random measurement errors must have a definite correlation. As a conclusion it is recommended to focus more strongly on the correlation of local CT image quality and data evaluation operations in order to reduce systematic errors in surface computation and to increase repeatability of dimensional CT measurements.

Proceedings ArticleDOI
13 Apr 2016
TL;DR: In this article, the registration of in-vivo Drosophila brain volumes visualizing genetically encoded calcium indicators to an nc82 atlas using machine learning based contrast synthesis can yield improvements.
Abstract: Multi-modal image registration is a challenging task that is vital to fuse complementary signals for subsequent analyses. Despite much research into cost functions addressing this challenge, there exist cases in which these are ineffective. In this work, we show that (1) this is true for the registration of in-vivo Drosophila brain volumes visualizing genetically encoded calcium indicators to an nc82 atlas and (2) that machine learning based contrast synthesis can yield improvements. More specifically, the number of subjects for which the registration outright failed was greatly reduced (from 40% to 15%) by using a synthesized image.