scispace - formally typeset
Search or ask a question

Showing papers on "Interaction network published in 2013"


Journal ArticleDOI
04 Apr 2013-PLOS ONE
TL;DR: A network-based approach for the prediction of drug targets for a given disease and the ability of the method to identify non-suspected repositioning candidates using diabetes type 1 as an example is demonstrated.
Abstract: The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example.

213 citations


Journal ArticleDOI
TL;DR: A systems-based classifier is built to quantitatively estimate the global perturbation caused by deleterious mutations in each gene and shows its strong potential for interpretation of variants involved in Mendelian diseases and in complex disorders probed by genome-wide association studies.
Abstract: The decreasing cost of sequencing is leading to a growing repertoire of personal genomes. However, we are lagging behind in understanding the functional consequences of the millions of variants obtained from sequencing. Global system-wide effects of variants in coding genes are particularly poorly understood. It is known that while variants in some genes can lead to diseases, complete disruption of other genes, called ‘loss-of-function tolerant’, is possible with no obvious effect. Here, we build a systems-based classifier to quantitatively estimate the global perturbation caused by deleterious mutations in each gene. We first survey the degree to which gene centrality in various individual networks and a unified ‘Multinet’ correlates with the tolerance to loss-of-function mutations and evolutionary conservation. We find that functionally significant and highly conserved genes tend to be more central in physical protein-protein and regulatory networks. However, this is not the case for metabolic pathways, where the highly central genes have more duplicated copies and are more tolerant to loss-of-function mutations. Integration of three-dimensional protein structures reveals that the correlation with centrality in the protein-protein interaction network is also seen in terms of the number of interaction interfaces used. Finally, combining all the network and evolutionary properties allows us to build a classifier distinguishing functionally essential and loss-of-function tolerant genes with higher accuracy (AUC = 0.91) than any individual property. Application of the classifier to the whole genome shows its strong potential for interpretation of variants involved in Mendelian diseases and in complex disorders probed by genome-wide association studies.

163 citations


Journal ArticleDOI
TL;DR: ReACT enables the first view of these interactions inside cells, and the results acquired with this method suggest cross-linking can play a major role in future efforts to map the interactome in cells.
Abstract: Protein interaction topologies are critical determinants of biological function. Large-scale or proteome-wide measurements of protein interaction topologies in cells currently pose an unmet challenge that could dramatically improve understanding of complex biological systems. A primary impediment includes direct protein topology and interaction measurements from living systems since interactions that lack biological significance may be introduced during cell lysis. Furthermore, many biologically relevant protein interactions will likely not survive the lysis/sample preparation and may only be measured with in vivo methods. As a step toward meeting this challenge, a new mass spectrometry method called Real-time Analysis for Cross-linked peptide Technology (ReACT) has been developed that enables assignment of cross-linked peptides “on-the-fly”. Using ReACT, 708 unique cross-linked (<5% FDR) peptide pairs were identified from cross-linked E. coli cells. These data allow assembly of the first protein interact...

135 citations


Journal ArticleDOI
26 Jul 2013-PLOS ONE
TL;DR: The Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies and the major find is that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer eradication.
Abstract: A Boolean dynamical system integrating the main signaling pathways involved in cancer is constructed based on the currently known protein-protein interaction network. This system exhibits stationary protein activation patterns – attractors – dependent on the cell's microenvironment. These dynamical attractors were determined through simulations and their stabilities against mutations were tested. In a higher hierarchical level, it was possible to group the network attractors into distinct cell phenotypes and determine driver mutations that promote phenotypic transitions. We find that driver nodes are not necessarily central in the network topology, but at least they are direct regulators of central components towards which converge or through which crosstalk distinct cancer signaling pathways. The predicted drivers are in agreement with those pointed out by diverse census of cancer genes recently performed for several human cancers. Furthermore, our results demonstrate that cell phenotypes can evolve towards full malignancy through distinct sequences of accumulated mutations. In particular, the network model supports routes of carcinogenesis known for some tumor types. Finally, the Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies. The major find is that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer eradication.

135 citations


Journal ArticleDOI
TL;DR: A three‐sigma method to identify active time points of each protein in a cellular cycle is proposed and 94% essential proteins are in the group of proteins that are active at equal or great than 12 timepoints of GSE4987, which indicates the potential existence of feedback mechanisms that can stabilize the expression level of essential proteins.
Abstract: In recent years, researchers have tried to inject dynamic information into static protein interaction networks (PINs). The paper first proposes a three-sigma method to identify active time points of each protein in a cellular cycle, where three-sigma principle is used to compute an active threshold for each gene according to the characteristics of its expression curve. Then a dynamic protein interaction network (DPIN) is constructed, which includes the dynamic changes of protein interactions. To validate the efficiency of DPIN, MCL, CPM, and core attachment algorithms are applied on two different DPINs, the static PIN and the time course PIN (TC-PIN) to detect protein complexes. The performance of each algorithm on DPINs outperforms those on other networks in terms of matching with known complexes, sensitivity, specificity, f-measure, and accuracy. Furthermore, the statistics of three-sigma principle show that 23-45% proteins are active at a time point and most proteins are active in about half of cellular cycle. In addition, we find 94% essential proteins are in the group of proteins that are active at equal or great than 12 timepoints of GSE4987, which indicates the potential existence of feedback mechanisms that can stabilize the expression level of essential proteins and might provide a new insight for predicting essential proteins from dynamic protein networks.

131 citations


Journal ArticleDOI
TL;DR: How mutations may be treated as a perturbation of the molecular interaction network and what insights may be gained from taking this perspective are examined.

130 citations


Journal ArticleDOI
23 Oct 2013-PLOS ONE
TL;DR: This work introduces diffusion state distance (DSD), a new metric based on a graph diffusion property, designed to capture finer-grained distinctions in proximity for transfer of functional annotation in PPI networks.
Abstract: In protein-protein interaction (PPI) networks, functional similarity is often inferred based on the function of directly interacting proteins, or more generally, some notion of interaction network proximity among proteins in a local neighborhood. Prior methods typically measure proximity as the shortest-path distance in the network, but this has only a limited ability to capture fine-grained neighborhood distinctions, because most proteins are close to each other, and there are many ties in proximity. We introduce diffusion state distance (DSD), a new metric based on a graph diffusion property, designed to capture finer-grained distinctions in proximity for transfer of functional annotation in PPI networks. We present a tool that, when input a PPI network, will output the DSD distances between every pair of proteins. We show that replacing the shortest-path metric by DSD improves the performance of classical function prediction methods across the board.

128 citations


Journal ArticleDOI
TL;DR: It is shown how Variance-Stabilizing Transformed RNA-seq data samples are the most similar to microarray ones, with respect to inter-sample variation, correlation coefficient distribution and network topological architecture, and shown how betweenness centrality is generally a positive marker for essential genes in A.thaliana, regardless of the platform originating the data.
Abstract: Motivation: Coexpression networks are data-derived representations of genes behaving in a similar way across tissues and experimental conditions. They have been used for hypothesis generation and guilt-by-association approaches for inferring functions of previously unknown genes. So far, the main platform for expression data has been DNA microarrays; however, the recent development of RNA-seq allows for higher accuracy and coverage of transcript populations. It is therefore important to assess the potential for biological investigation of coexpression networks derived from this novel technique in a condition-independent dataset. Results: We collected 65 publicly available Illumina RNA-seq high quality Arabidopsis thaliana samples and generated Pearson correlation coexpression networks. These networks were then compared with those derived from analogous microarray data. We show how Variance-Stabilizing Transformed (VST) RNA-seq data samples are the most similar to microarray ones, with respect to inter-sample variation, correlation coefficient distribution and network topological architecture. Microarray networks show a slightly higher score in biology-derived quality assessments such as overlap with the known protein–protein interaction network and edge ontological agreement. Different coexpression network centralities are investigated; in particular, we show how betweenness centrality is generally a positive marker for essential genes in A.thaliana, regardless of the platform originating the data. In the end, we focus on a specific gene network case, showing that although microarray data seem more suited for gene network reverse engineering, RNA-seq offers the great advantage of extending coexpression analyses to the entire transcriptome. Contact: fgiorgi@appliedgenomics.org Supplementary information: Supplementary data are available at Bioinformatics online.

114 citations


Journal ArticleDOI
05 Dec 2013-PLOS ONE
TL;DR: CyTargetLinker provides a simple and extensible framework for biologists and bioinformaticians to integrate different regulatory interactions into their network analysis approaches.
Abstract: Introduction: The high complexity and dynamic nature of the regulation of gene expression, protein synthesis, and protein activity pose a challenge to fully understand the cellular machinery. By deciphering the role of important players, including transcription factors, microRNAs, or small molecules, a better understanding of key regulatory processes can be obtained. Various databases contain information on the interactions of regulators with their targets for different organisms, data recently being extended with the results of the ENCODE (Encyclopedia of DNA Elements) project. A systems biology approach integrating our understanding on different regulators is essential in interpreting the regulation of molecular biological processes. Implementation: We developed CyTargetLinker (http://projects.bigcat.unimaas.nl/cytargetlinker) a Cytoscape app, for integrating regulatory interactions in network analysis. Recently we released CyTargetLinker as one of the first apps for Cytoscape 3. It provides a user-friendly and flexible interface to extend biological networks with regulatory interactions, such as microRNA-target, transcription factor-target and/or drug-target. Importantly, CyTargetLinker employs identifier mapping to combine various interaction data resources that use different types of identifiers. Results: Three case studies demonstrate the strength and broad applicability of CyTargetLinker, (i) extending a mouse molecular interaction network, containing genes linked to diabetes mellitus, with validated and predicted microRNAs, (ii) enriching a molecular interaction network, containing DNA repair genes, with ENCODE transcription factor and (iii) building a regulatory meta-network in which a biological process is extended with information on transcription factor, microRNA and drug regulation. Conclusions: CyTargetLinker provides a simple and extensible framework for biologists and bioinformaticians to integrate different regulatory interactions into their network analysis approaches. Visualization options enable biological interpretation of complex regulatory networks in a graphical way. Importantly the incorporation of our tool into the Cytoscape framework allows the application of CyTargetLinker in combination with a wide variety of other apps for state-ofthe- art network analysis. Copyright: © 2013 Kutmon et al.

112 citations


Journal ArticleDOI
TL;DR: A connection is established between the objective function and correlation clustering to propose practical approximation algorithms for the problem of clustering probabilistic graphs and show the practicality of the techniques using a large social network of Yahoo! users consisting of one billion edges.
Abstract: We study the problem of clustering probabilistic graphs. Similar to the problem of clustering standard graphs, probabilistic graph clustering has numerous applications, such as finding complexes in probabilistic protein-protein interaction (PPI) networks and discovering groups of users in affiliation networks. We extend the edit-distance-based definition of graph clustering to probabilistic graphs. We establish a connection between our objective function and correlation clustering to propose practical approximation algorithms for our problem. A benefit of our approach is that our objective function is parameter-free. Therefore, the number of clusters is part of the output. We also develop methods for testing the statistical significance of the output clustering and study the case of noisy clusterings. Using a real protein-protein interaction network and ground-truth data, we show that our methods discover the correct number of clusters and identify established protein relationships. Finally, we show the practicality of our techniques using a large social network of Yahoo! users consisting of one billion edges.

110 citations


Journal ArticleDOI
TL;DR: This work reviews the major approaches to construct, analyze, use, and carry out quality control on plant protein interactome networks and presents experimental and computational approaches for large-scale mapping, methods for validation or smaller-scale functional studies, important bioinformatics resources, and findings from recently published large- scale plant interactome network maps.
Abstract: Protein-protein interactions are a critical element of biological systems, and the analysis of interaction partners can provide valuable hints about unknown functions of a protein. In recent years, several large-scale protein interaction studies have begun to unravel the complex networks through which plant proteins exert their functions. Two major classes of experimental approaches are used for protein interaction mapping: analysis of direct interactions using binary methods such as yeast two-hybrid or split ubiquitin, and analysis of protein complexes through affinity purification followed by mass spectrometry. In addition, bioinformatics predictions can suggest interactions that have evaded detection by other methods or those of proteins that have not been investigated. Here we review the major approaches to construct, analyze, use, and carry out quality control on plant protein interactome networks. We present experimental and computational approaches for large-scale mapping, methods for validation or smaller-scale functional studies, important bioinformatics resources, and findings from recently published large-scale plant interactome network maps.

Journal ArticleDOI
TL;DR: A move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes, which points to new avenues of research.
Abstract: Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This paper investigates a bipartite consensus process, in which all the agents converge to a final state characterized by identical modulus but opposite sign, and introduces signless Laplacian matrix and signed Laplacan matrix to analyze the bipartITE consensus of multi-agent systems on homogeneous networks and heterogenous networks, respectively.
Abstract: Collective dynamics is a complex emergence phenomenon yielded by local interactions within multi-agent systems. When agents cooperate or compete in the community, a collective behavior, such as consensus, polarization or diversity, may emerge. In this paper, we investigate a bipartite consensus process, in which all the agents converge to a final state characterized by identical modulus but opposite sign. Firstly, the interaction network of the agents is represented by a directed signed graph. A neighbor-based interaction rule is proposed for each agent with a single integrator dynamics. Then, we classify the signed network into heterogeneous networks and homogeneous networks according to the sign of edges. Under a weak connectivity assumption that the signed network has a spanning tree, some sufficient conditions are derived for bipartite consensus of multi-agent systems with the help of a structural balance theory. At the same time, signless Laplacian matrix and signed Laplacian matrix are introduced to analyze the bipartite consensus of multi-agent systems on homogeneous networks and heterogenous networks, respectively. Finally, simulation results are provided to demonstrate the bipartite consensus formation.

Journal ArticleDOI
21 Mar 2013-PLOS ONE
TL;DR: It is demonstrated that more robust essential protein discovery method can be developed by integrating the topological properties of PPI network and the co-expression of interacting proteins, as well as outperforms classical centrality measures.
Abstract: Background Experimental methods for the identification of essential proteins are always costly, time-consuming, and laborious. It is a challenging task to find protein essentiality only through experiments. With the development of high throughput technologies, a vast amount of protein-protein interactions are available, which enable the identification of essential proteins from the network level. Many computational methods for such task have been proposed based on the topological properties of protein-protein interaction (PPI) networks. However, the currently available PPI networks for each species are not complete, i.e. false negatives, and very noisy, i.e. high false positives, network topology-based centrality measures are often very sensitive to such noise. Therefore, exploring robust methods for identifying essential proteins would be of great value. Method In this paper, a new essential protein discovery method, named CoEWC (Co-Expression Weighted by Clustering coefficient), has been proposed. CoEWC is based on the integration of the topological properties of PPI network and the co-expression of interacting proteins. The aim of CoEWC is to capture the common features of essential proteins in both date hubs and party hubs. The performance of CoEWC is validated based on the PPI network of Saccharomyces cerevisiae. Experimental results show that CoEWC significantly outperforms the classical centrality measures, and that it also outperforms PeC, a newly proposed essential protein discovery method which outperforms 15 other centrality measures on the PPI network of Saccharomyces cerevisiae. Especially, when predicting no more than 500 proteins, even more than 50% improvements are obtained by CoEWC over degree centrality (DC), a better centrality measure for identifying protein essentiality. Conclusions We demonstrate that more robust essential protein discovery method can be developed by integrating the topological properties of PPI network and the co-expression of interacting proteins. The proposed centrality measure, CoEWC, is effective for the discovery of essential proteins.

Book ChapterDOI
TL;DR: In this article, the authors provide an introduction to network theory and application in agroecosystems, identify network metrics for management and environmental change, and highlight gaps in current knowledge and key research themes.
Abstract: Worldwide demand for food will increase dramatically in the future as global human population grows. Increasing efficiency of crop production is unlikely to be sufficient to meet the demand, presenting a long-term threat to humanity’s ‘well-being’. Knowledge of the system-level behaviour of agroecosystems, however, remains surprisingly limited, reflecting the agricultural focus on particular species. This is starting to change towards an ecosystem and network-based approach, following the recent revolution in thinking about resource use and sustainability in our other global food production industry: commercial fisheries. Agroecosystems appear to retain plasticity of ecological processes that might be manipulated for productivity and sustainability. Network structure and dynamics have substantial impacts on ecosystem performance, but evidence from agroecosystems lags behind network theory. Here, we provide an introduction to network theory and application in agroecosystems, identify network metrics for management and environmental change, and, finally, we highlight gaps in our current knowledge and key research themes. These themes include: is the structure of agroecological networks affected by sampling; how do ecosystem services ‘emerge’ empirically from ecological organization, function and network properties; how do spatial and temporal scale and resolution influence system performance; and, can network agroecology be used to design systems that maximize ecosystem services?

Journal ArticleDOI
TL;DR: A current trend is the deployment of open, extensible visualization tools (e.g. Cytoscape), that may be incrementally enriched by the interactomics community with novel and more powerful functions for PIN analysis, through the development of plug-ins.
Abstract: Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization.

Journal ArticleDOI
TL;DR: A novel network-based approach to identify putative causal module biomarkers of complex diseases by integrating heterogeneous information, for example, epigenomic data, gene expression data, and protein-protein interaction network finds that aberrant DNA methylation of genes encoding TF considerably contributes to the activity change of some genes.

Journal ArticleDOI
TL;DR: The Lagom regiO model as mentioned in this paper locates agents in one of a user-chosen number of regions and can be used to represent diverse economic areas by specifying characteristics of agents and their interaction network as depending on their regions.
Abstract: This paper presents Lagom regiO: a multi-agent model of several growing economic areas in interaction. The model is part of the Lagom model family: economic multi-agent models developed to make steps toward understanding equilibrium selection and identifying win-win opportunities for climate policy. The particular feature of the model presented here is that it locates agents in one of a user-chosen number of regions. It can thus be used to represent diverse economic areas by specifying characteristics of agents and their interaction network as depending on their regions.

Journal ArticleDOI
TL;DR: The number of intracomplex or intraprocess interactions that a protein has is a better indicator of its essentiality than its overall number of interactions, and it is found that within an essential complex, its essential proteins have on average more interactions than its non-essential proteins.
Abstract: Numerous studies have suggested that hub proteins in the S. cerevisiae physical interaction network are more likely to be essential than other proteins. The proposed reasons underlying this observed relationship between topology and functioning have been subject to some controversy, with recent work suggesting that it arises due to the participation of hub proteins in essential complexes and processes. However, do these essential modules themselves have distinct network characteristics, and how do their essential proteins differ in their topological properties from their non-essential proteins? We aimed to advance our understanding of protein essentiality by analyzing proteins, complexes and processes within their broader functional context and by considering physical interactions both within and across complexes and biological processes. In agreement with the view that essentiality is a modular property, we found that the number of intracomplex or intraprocess interactions that a protein has is a better indicator of its essentiality than its overall number of interactions. Moreover, we found that within an essential complex, its essential proteins have on average more interactions, especially intracomplex interactions, than its non-essential proteins. Finally, we built a module-level interaction network and found that essential complexes and processes tend to have higher interaction degrees in this network than non-essential complexes and processes; that is, they exhibit a larger amount of functional cross-talk than their non-essential counterparts.

Journal ArticleDOI
TL;DR: This work proposes using food web models that can infer the potential interaction links between species as a constraint in species distribution models and demonstrates that this combined approach is able to improve species distribution and community forecasts.
Abstract: The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant–herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks.

Journal ArticleDOI
TL;DR: An extensive ASD-associated molecular network is revealed, whose topology indicates ASD-relevant mutational deleteriousness and that mechanistically details how convergent aetiologies can result extensively from CNVs affecting pathways causally implicated in ASD.
Abstract: Autism Spectrum Disorders (ASD) are highly heritable and characterised by impairments in social interaction and communication, and restricted and repetitive behaviours. Considering four sets of de novo copy number variants (CNVs) identified in 181 individuals with autism and exploiting mouse functional genomics and known protein-protein interactions, we identified a large and significantly interconnected interaction network. This network contains 187 genes affected by CNVs drawn from 45% of the patients we considered and 22 genes previously implicated in ASD, of which 192 form a single interconnected cluster. On average, those patients with copy number changed genes from this network possess changes in 3 network genes, suggesting that epistasis mediated through the network is extensive. Correspondingly, genes that are highly connected within the network, and thus whose copy number change is predicted by the network to be more phenotypically consequential, are significantly enriched among patients that possess only a single ASD-associated network copy number changed gene (p = 0.002). Strikingly, deleted or disrupted genes from the network are significantly enriched in GO-annotated positive regulators (2.3-fold enrichment, corrected p = 2×10−5), whereas duplicated genes are significantly enriched in GO-annotated negative regulators (2.2-fold enrichment, corrected p = 0.005). The direction of copy change is highly informative in the context of the network, providing the means through which perturbations arising from distinct deletions or duplications can yield a common outcome. These findings reveal an extensive ASD-associated molecular network, whose topology indicates ASD-relevant mutational deleteriousness and that mechanistically details how convergent aetiologies can result extensively from CNVs affecting pathways causally implicated in ASD.

Journal ArticleDOI
TL;DR: A network-based computational method for drug target prediction, applicable on a genome-wide scale, relies on the analysis of gene expression following drug treatment in the context of a functional protein association network and indicates the predictive power of integrating experimental gene expression data with prior knowledge from protein association networks.
Abstract: Polypharmacology, which focuses on designing drugs that bind efficiently to multiple targets, has emerged as a new strategic trend in today's drug discovery research. Many successful drugs achieve their effects via multi-target interactions. However, these targets are largely unknown for both marketed drugs and drugs in development. A better knowledge of a drug's mode of action could be of substantial value to future drug development, in particular for side effect prediction and drug repositioning. We propose a network-based computational method for drug target prediction, applicable on a genome-wide scale. Our approach relies on the analysis of gene expression following drug treatment in the context of a functional protein association network. By diffusing differential expression signals to neighboring or correlated nodes in the network, genes are prioritized as potential targets based on the transcriptional response of functionally related genes. Different diffusion strategies were evaluated on 235 publicly available gene expression datasets for treatment with bioactive molecules having a known target. AUC values of up to more than 90% demonstrate the effectiveness of our approach and indicate the predictive power of integrating experimental gene expression data with prior knowledge from protein association networks.

Journal ArticleDOI
TL;DR: This work will survey the literature trying to answer the following questions: Do hub proteins have special biological properties?


Journal ArticleDOI
TL;DR: In this paper, a long-term study of temporal variation of an ant-plant network is presented with the aims of depicting its structural changes over a 20-year period, as revealed by nestedness and modularity analysis and other parameters.

Book ChapterDOI
01 Jan 2013
TL;DR: The idea that network analysis methods are under-utilized in social insect research is put forward, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account.
Abstract: Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.

Journal ArticleDOI
30 May 2013-PLOS ONE
TL;DR: The present Y2H analyses per se provide interaction network among MAPKKs and MAPKs which would shed more light on MAPK signalling network in rice.
Abstract: Protein-protein interaction is one of the crucial ways to decipher the functions of proteins and to understand their role in complex pathways at cellular level. Such a protein-protein interaction network in many crop plants remains poorly defined owing largely to the involvement of high costs, requirement for state of the art laboratory, time and labour intensive techniques. Here, we employed computational docking using ZDOCK and RDOCK programmes to identify interaction network between members of Oryza sativa mitogen activated protein kinase kinase (MAPKK) and mitogen activated protein kinase (MAPK). The 3-dimentional (3-D) structures of five MAPKKs and eleven MAPKs were determined by homology modelling and were further used as input for docking studies. With the help of the results obtained from ZDOCK and RDOCK programmes, top six possible interacting MAPK proteins were predicted for each MAPKK. In order to assess the reliability of the computational prediction, yeast two-hybrid (Y2H) analyses were performed using rice MAPKKs and MAPKs. A direct comparison of Y2H assay and computational prediction of protein interaction was made. With the exception of one, all the other MAPKK-MAPK pairs identified by Y2H screens were among the top predictions by computational dockings. Although, not all the predicted interacting partners could show interaction in Y2H, yet, the harmony between the two approaches suggests that the computational predictions in the present work are reliable. Moreover, the present Y2H analyses per se provide interaction network among MAPKKs and MAPKs which would shed more light on MAPK signalling network in rice.

Journal ArticleDOI
TL;DR: In this article, the authors developed information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology.
Abstract: It is notoriously difficult to predict the behaviour of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology. Even if the dynamics of each microscopic unit is known, a real understanding of their contributions to the macroscopic system behaviour is still lacking. Here, we develop information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics. We show that for a system of units connected by a network of interaction potentials with an arbitrary degree distribution, highly connected units have less impact on the system dynamics when compared with intermediately connected units. In an equilibrium setting, the hubs are often found to dictate the long-term behaviour. However, we find both analytically and experimentally that the instantaneous states of these units have a short-lasting effect on the state trajectory of the entire system. We present qualitative evidence of this phenomenon from empirical findings about a social network of product recommendations, a protein–protein interaction network and a neural network, suggesting that it might indeed be a widespread property in nature.

Journal ArticleDOI
TL;DR: In this article, a computational network-based approach for feasible and efficient identification of multicomponent synergistic agents is proposed, which exploits the topological features of the related PPI network to identify possible combinations of hit targets.

Journal ArticleDOI
TL;DR: Compared with other highly cited module-finding tools, jActiveModules and Matisse, Walktrap-GM shows strong performance in the discovery of modules enriched with known cancer genes, their joint effects and promising candidate genes.
Abstract: Background The etiology of cancer involves a complex series of genetic and environmental conditions. To better represent and study the intricate genetics of cancer onset and progression, we construct a network of biological interactions to search for groups of genes that compose cancer-related modules. Three cancer expression datasets are investigated to prioritize genes and interactions associated with cancer outcomes. Using a graph-based approach to search for communities of phenotype-related genes in microarray data, we find modules of genes associated with cancer phenotypes in a weighted interaction network.