scispace - formally typeset
Search or ask a question

Showing papers on "Lactation published in 2017"


Journal ArticleDOI
TL;DR: There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG and among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome.
Abstract: True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother’s metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.

237 citations


Journal ArticleDOI
TL;DR: Calves exhibited similar microbial families and genera but different OTUs than adults, with a transition to an adult-like microbiota between weaning and 1 year of age, which suggests that alterations of the microbiota for improving downstream milk production may be most effective during, or immediately following, the weaning transition.
Abstract: Development of the dairy calf gastrointestinal tract (GIT) and its associated microbiota are essential for survival and milk production, as this community is responsible for converting plant-based feeds into accessible nutrients. However, little is known regarding the establishment of microbes in the calf GIT. Here, we measured fecal-associated bacterial, archaeal, and fungal communities of dairy cows from 2 weeks to the middle of first lactation (>2 years) as well as rumen-associated communities from weaning (8 weeks) to first lactation. These communities were then correlated to animal growth and health. Although succession of specific operational taxonomic units (OTUs) was unique to each animal, beta-diversity decreased while alpha-diversity increased as animals aged. Calves exhibited similar microbial families and genera but different OTUs than adults, with a transition to an adult-like microbiota between weaning and 1 year of age. This suggests that alterations of the microbiota for improving downstream milk production may be most effective during, or immediately following, the weaning transition.

129 citations


Journal ArticleDOI
09 Feb 2017-PLOS ONE
TL;DR: The findings on HMO concentrations over time of lactation and clusters based on 2’FL concentrations confirm previous observations and suggest that LNnT and LNT are ‘co-regulated’ with the FUT2 dependent 2‘FL concentration, with LnnT showing a positive and Lnt a negative relation.
Abstract: Background Human milk is the recommended and sole nutrient source for newborns. One of the largest components of human milk is oligosaccharides (HMOs) with major constituents determined by the mother genotype for the fucosyltransferase 2 (FUT2, secretor) gene. HMO variation has been related with infant microbiota establishment, diarrhea incidence, morbidity and mortality, IgE associated eczema and body composition. Objectives We investigated the (i) dependence of several major representative HMOs on the FUT2 status assessed through breast milk 2'Fucosyllactose (2'FL) and (ii) the relation of the 2'FL status with infant growth up to 4 months of life. Design From an open observatory, single center, longitudinal cohort study with quantitative human milk collection at 30, 60, and 120 days postpartum from 50 mothers, who gave birth to 25 female and 25 male singleton infants, we collected a representative sample of human milk. We quantified the following 5 representative HMOs: 2'FL, Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), 3'Sialyllactose (3'SL) and 6'Sialyllactose (6'SL). We grouped the milk samples and corresponding infants according to the measured milk 2'FL concentrations at 30 days of lactation, which clustered around low concentrations (95% CI of mean 12-42 mg/L) and high concentrations (95% CI of mean 1880-2460 mg/L) with the former likely representing Secretor negative mothers. Infant anthropometric measures were recorded at birth, 1, 2 and 4 months of age. Relations among the quantified HMOs and the relation of the high and low 2'FL HMOs groups with infant growth parameters were investigated via linear mixed models. Results The milk samples with low 2'FL concentration had higher LNT and lower LNnT concentrations compared to the samples with high 2'FL. The milk 3'- and 6'SL concentrations were independent of 2'FL. Over lactation time we observed a drop in the concentration of 2'FL, LNT, LNnT and 6'SL, especially from 1 to 2 months, while 3'SL remained at relatively constant concentration from 1 month onwards. Up to 4 months of age, we did not observe significant differences in body weight, body length, body mass index and head circumference of the infants who consumed breast milk with low or high FUT2 associated HMO concentrations and composition. Conclusions Our findings on HMO concentrations over time of lactation and clusters based on 2'FL concentrations confirm previous observations and suggest that LNnT and LNT are 'co-regulated' with the FUT2 dependent 2'FL concentration, with LNnT showing a positive and LNT a negative relation. Further, our findings also suggest that the relatively substantial variation in HMOs between the high and low 2'FL clusters do not impact infant growth of either sex up to 4 months of age. The study was registered in www.ClinicalTrial.gov (NCT01805011).

127 citations


Journal ArticleDOI
TL;DR: HMOs significantly decrease during the course of lactation, and these HMO concentrations can be correlated to the health of breastfed infants in order to investigate the protective effects of milk components.
Abstract: BACKGROUND The quantitation of human milk oligosaccharides (HMOs) is challenging because of the structural complexity and lack of standards. OBJECTIVE The objective of our study was to rapidly measure the absolute concentrations of HMOs in milk using LC-mass spectrometry (MS) and to determine the phenotypic secretor status of the mothers. METHODS This quantitative method for measuring HMO concentration was developed by using ultraperformance LC multiple reaction monitoring MS. It was validated and applied to milk samples from Malawi (88 individuals; 88 samples from postnatal month 6) and the United States (Davis, California; 45 individuals, mean age: 32 y; 103 samples collected on postnatal days 10, 26, 71, or 120, repeated measures included). The concentrations of α(1,2)-fucosylated HMOs were used to determine the mothers' phenotypic secretor status with high sensitivity and specificity. We used Friedman's test and Wilcoxon's signed rank test to evaluate the change in HMO concentration during the course of lactation, and Student's t test was used to compare secretors and nonsecretors. RESULTS A decrease (P < 0.05) in HMO concentration was observed during the course of lactation for the US mothers, corresponding to 19.3 ± 2.9 g/L for milk collected on postnatal day 10, decreasing to 8.53 ± 1.18 g/L on day 120 (repeated measures; n = 14). On postnatal day 180, the total concentration of HMOs in Malawi milk samples from secretors (6.46 ± 1.74 mg/mL) was higher (P < 0.05) than that in samples from nonsecretors (5.25 ± 2.55 mg/mL ). The same trend was observed for fucosylated species; the concentration was higher in Malawi milk samples from secretors (4.91 ± 1.22 mg/mL) than from nonsecretors (3.42 ± 2.27 mg/mL) (P < 0.05). CONCLUSIONS HMOs significantly decrease during the course of lactation. Secretor milk contains higher concentrations of total and fucosylated HMOs than does nonsecretor milk. These HMO concentrations can be correlated to the health of breastfed infants in order to investigate the protective effects of milk components. The trials were registered at clinicaltrials.gov as NCT01817127 and NCT00524446.

116 citations


Journal ArticleDOI
TL;DR: The data suggest that HS increases systemic AA utilization (e.g., decreased plasma AA and increased nitrogen excretion), a scenario that limits the AA supply to the mammary gland for milk protein synthesis.

110 citations


Journal ArticleDOI
TL;DR: Geographic differences in the microbial profiles were found in breast milk from mothers living in Taiwan and mainland China, and the predominant bacterial families Streptococcaceae, Staphylococc Families, and Pseudomonadaceae were key components for forming three respective clusters.
Abstract: Human breast milk is widely recognized as the best source of nutrients for healthy growth and development of infants; it contains a diverse microbiota. Here, we characterized the diversity of the microbiota in the breast milk of East Asian women and assessed whether delivery mode influenced the microbiota in the milk of healthy breast-feeding mothers. We profiled the microbiota in breast milk samples collected from 133 healthy mothers in Taiwan and in six regions of mainland China (Central, East, North, Northeast, South, and Southwest China) by using 16S rRNA pyrosequencing. Lactation stage (months postpartum when the milk sample was collected) and maternal body mass index did not influence the breast milk microbiota. Bacterial composition at the family level differed significantly among samples from the seven geographical regions. The five most predominant bacterial families were Streptococcaceae (mean relative abundance: 24.4%), Pseudomonadaceae (14.0%), Staphylococcaceae (12.2%), Lactobacillaceae (6.2%), and Oxalobacteraceae (4.8%). The microbial profiles were classified into three clusters, driven by Staphylococcaceae (abundance in Cluster 1: 42.1%), Streptococcaceae (Cluster 2: 48.5%), or Pseudomonadaceae (Cluster 3: 26.5%). Microbial network analysis at the genus level revealed that the abundances of the Gram-positive Staphylococcus, Streptococcus, and Rothia were negatively correlated with those of the Gram-negative Acinetobacter, Bacteroides, Halomonas, Herbaspirillum, and Pseudomonas. Milk from mothers who had undergone Caesarian section (C-section group) had a significantly higher abundance of Lactobacillus (P < 0.05) and a higher number of unique unclassified operational taxonomic units (P < 0.001) than that from mothers who had undergone vaginal delivery (vaginal group). These findings revealed that (i) geographic differences in the microbial profiles were found in breast milk from mothers living in Taiwan and mainland China, (ii) the predominant bacterial families Streptococcaceae, Staphylococcaceae, and Pseudomonadaceae were key components for forming three respective clusters, and (iii) a significantly greater number of unique OTUs was found in the breast milk from mothers who had undergone C-section than from those who had delivered vaginally.

102 citations


Journal ArticleDOI
TL;DR: Increasing acetate supply to lactating cows increases milk fat synthesis, suggesting that nutritional strategies that increase ruminal acetate absorption would be expected to increase milk fat by increasing de novo FA synthesis.
Abstract: Background: Acetate is a short-chain fatty acid (FA) that is especially important to cows because it is the major substrate for de novo FA synthesis. However, the effect of acetate supply on mammary lipid synthesis is not clear.Objective: The objective of this experiment was to determine the effect of increasing acetate supply on milk fat synthesis in lactating dairy cows.Methods: Six multiparous lactating Holstein cows were randomly assigned to treatments in a replicated design to investigate the effect of acetate supply on milk fat synthesis. Treatments were 0 (control), 5, 10, and 15 mol acetate/d continuously infused into the rumen for 4 d. Rumen short-chain FAs, plasma hormones and metabolites, milk fat concentration, and milk FA profile were analyzed on day 4 of each treatment. Polynomial contrasts were used to test the linear and quadratic effects of increasing acetate supply.Results: Acetate increased milk fat yield quadratically (P < 0.01) by 7%, 16%, and 14% and increased milk fat concentration linearly (P < 0.001) by 6%, 9%, and 11% for 5, 10, and 15 mol acetate/d, respectively, compared with the control treatment. Increased milk fat yield predominantly was due to a linear increase in 16-carbon FAs (P < 0.001) and a quadratic increase in de novo synthesized FAs (<16-carbon FAs; P < 0.01), indicating that there was stimulation of de novo synthesis pathways. Apparent transfer of acetate to milk fat was 33.4%, 36.2%, and 20.6% for 5, 10, and 15 mol/d, respectively. Acetate infusion linearly increased the relative concentration of rumen acetate (P < 0.001) before feeding, but not after feeding. Acetate linearly increased plasma s-hydroxybutyric acid by 29%, 50%, and 78%, respectively, after feeding compared with the control treatment (P < 0.01).Conclusions: Increasing acetate supply to lactating cows increases milk fat synthesis, suggesting that nutritional strategies that increase ruminal acetate absorption would be expected to increase milk fat by increasing de novo FA synthesis.

100 citations


Journal ArticleDOI
TL;DR: In conclusion, feeding ethyl-cellulose RPM to achieve a ratio close to 2.8:1 in metabolizable protein improved dairy cow performance from parturition through 60 DIM, and was, at least in part, driven by the greater voluntary DMI and better liver function.

96 citations


Journal ArticleDOI
15 Mar 2017-Diseases
TL;DR: It is hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived mi RNAs, that are identical to their human analogs.
Abstract: It is the intention of this review to characterize milk’s role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic “doping system” of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow’s milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow’s milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.

84 citations


Journal ArticleDOI
TL;DR: One humped camel (Camelus dromedarius) breeds, indigenous to India, have been shown to have good genetic potential to produce milk, which has been traditionally used in different regions of the world as natural adjuvant for managing a variety of human diseases.
Abstract: One humped camel (Camelus dromedarius) breeds, indigenous to India, have been shown to have good genetic potential to produce milk. Camel milk not only is cost-effective in terms of feed conversion but also has additional advantage of longer lactation period and unique adaptation mechanisms for warm arid and semiarid regions. The key features of camel milk in comparison with other milk are low fat with high content of unsaturated and long-chain fatty acid. The proteins are rich in lactoferrin and lysozymes, but deficient in β-lactoglobulin. It has higher percentage of total salts, free calcium, protective proteins and vitamin C, and some of the microminerals, viz iron, copper and zinc. Physicochemical properties of camel milk are also unique and useful for food processing. The shelf life of raw camel milk is 8–9 h, which can be extended up to 18–20 h through activation of camel lactoperoxidase system. Heat stability of camel milk is shown to be highest at pH 6.8, and it ferments relatively slowly compared to the cattle milk. The camel milk is successfully processed for producing a variety of products, such as fermented milk (‘lassi’), soft cheese, flavored milk and ‘kulfee’ (a kind of ice cream). Camel milk has been traditionally used in different regions of the world as natural adjuvant for managing a variety of human diseases.

79 citations


Journal ArticleDOI
TL;DR: Fat content and FA composition of breast milk were associated with maternal age, BMI, supplement use and infant age, and dietary intakes of EPA, DHA, n-3 FA,n-6 FA, SFA and PUFA were positively correlated with the corresponding FA in the milk samples.
Abstract: The aim of this study was to determine the fatty acid (FA) composition of breast milk, and its association with mothers' FA intake. Milk samples were obtained from 238 healthy lactating women who volunteered to participate in the Human Milk Micronutrients Analysis Research. Dietary intake during lactation was assessed using a 3-d food record, and fat content and FA composition of the breast milk samples were analysed by IR spectrometry using MilkoScan FT2 and GC flame ionisation detector, respectively. The fat content was 3·31 (sd 1·41) g/100 ml breast milk. The concentrations of arachidonic acid (20 : 4 n-6), EPA (20 : 5 n-3) and DHA (22 : 6 n-3) in breast milk were 0·48 (sd 0·13), 0·15 (sd 0·12) and 0·67 (sd 0·47) % of total FA, respectively. Fat content and FA composition of breast milk were associated with maternal age, BMI, supplement use and infant age. Dietary intakes of EPA, DHA, n-3 FA, n-6 FA, SFA and PUFA were positively correlated with the corresponding FA in the milk samples. FA levels in breast milk and maternal diet are highly correlated. Further studies are warranted to explore factors that may be associated with changes in FA composition in human milk.

Journal ArticleDOI
TL;DR: Human milk in the second year postpartum contained significantly higher concentrations of total protein, lactoferrin, lysozyme and Immunoglobulin A, than milk bank samples, and significantly lower concentrations of zinc, calcium, iron and oligosaccharides.
Abstract: While the composition of human milk has been studied extensively in the first year of lactation, there is a paucity of data regarding human milk composition beyond one year postpartum. Policies vary at milk banks around the world regarding how long lactating women are eligible to donate their milk. The primary purpose of this study is to describe longitudinal changes in human milk composition in the second year postpartum to support the development of evidence based guidelines regarding how long lactating women can donate human milk to a milk bank. Nineteen lactating women in North Carolina provided monthly milk samples from 11 months to 17 months postpartum (N = 131), and two non-profit milk banks provided (N = 33) pooled, unpasteurized milk samples from 51 approved donors less than one year postpartum. There was a significant increase (P < 0.05) in the concentration of total protein, lactoferrin, lysozyme, Immunoglobulin A, oligosaccharides and sodium in longitudinal samples of mother's milk between 11 and 17 months postpartum, while zinc and calcium concentrations declined, and no changes were observed in lactose, fat, iron and potassium. Human milk in the second year postpartum contained significantly higher concentrations of total protein, lactoferrin, lysozyme and Immunoglobulin A, than milk bank samples, and significantly lower concentrations of zinc, calcium, iron and oligosaccharides. Accepting milk bank donations beyond one year postpartum is a potential strategy for increasing the supply of donor milk, but may require mineral fortification.

Journal ArticleDOI
TL;DR: The study examined microRNA expression and regulatory patterns during an entire bovine lactation cycle to suggest diverse, temporal and physiological signal-dependent regulatory and mediator functions for miRNAs during lactation.
Abstract: The study examined microRNA (miRNA) expression and regulatory patterns during an entire bovine lactation cycle. Total RNA from milk fat samples collected at the lactogenesis (LAC, day1 [D1] and D7), galactopoiesis (GAL, D30, D70, D130, D170 and D230) and involution (INV, D290 and when milk production dropped to 5 kg/day) stages from 9 cows was used for miRNA sequencing. A total of 475 known and 238 novel miRNAs were identified. Fifteen abundantly expressed miRNAs across lactation stages play regulatory roles in basic metabolic, cellular and immunological functions. About 344, 366 and 209 miRNAs were significantly differentially expressed (DE) between GAL and LAC, INV and GAL, and INV and LAC stages, respectively. MiR-29b/miR-363 and miR-874/miR-6254 are important mediators for transition signals from LAC to GAL and from GAL to INV, respectively. Moreover, 58 miRNAs were dynamically DE in all lactation stages and 19 miRNAs were significantly time-dependently DE throughout lactation. Relevant signalling pathways for transition between lactation stages are involved in apoptosis (PTEN and SAPK/JNK), intracellular signalling (protein kinase A, TGF-β and ERK5), cell cycle regulation (STAT3), cytokines, hormones and growth factors (prolactin, growth hormone and glucocorticoid receptor). Overall, our data suggest diverse, temporal and physiological signal-dependent regulatory and mediator functions for miRNAs during lactation.

Journal ArticleDOI
TL;DR: This review gives an integrated overview of the physiology of lactation with a particular focus on cellular and molecular mechanisms involved in milk product secretion and their regulations.

Journal ArticleDOI
TL;DR: The findings suggest that the level of maternal adiposity during lactation may influence the early appetite programming of breastfed infants by modulating concentrations of HM components.
Abstract: Human milk (HM) appetite hormones and macronutrients may mediate satiety in breastfed infants. This study investigated associations between maternal adiposity and concentrations of HM leptin, adiponectin, protein and lactose, and whether these concentrations and the relationship between body mass index and percentage fat mass (%FM) in a breastfeeding population change over the first year of lactation. Lactating women (n = 59) provided milk samples (n = 283) at the 2nd, 5th, 9th and/or 12th month of lactation. Concentrations of leptin, adiponectin, total protein and lactose were measured. Maternal %FM was measured using bioimpedance spectroscopy. Higher maternal %FM was associated with higher leptin concentrations in both whole (0.006 ± 0.002 ng/mL, p = 0.008) and skim HM (0.005 ± 0.002 ng/mL, p = 0.007), and protein (0.16 ± 0.07 g/L, p = 0.028) concentrations. Adiponectin and lactose concentrations were not associated with %FM (0.01 ± 0.06 ng/mL, p = 0.81; 0.08 ± 0.11 g/L, p = 0.48, respectively). Whole milk concentrations of adiponectin and leptin did not differ significantly over the first year of lactation. These findings suggest that the level of maternal adiposity during lactation may influence the early appetite programming of breastfed infants by modulating concentrations of HM components.

Journal ArticleDOI
TL;DR: G gestational heat stress may significantly impact a herd through its effects on sows and their offspring, and further work is necessary to determine the magnitude of the effects across fa cilities and breeds.
Abstract: Seasonal infertility is a significant problem in the swine industry, and may be influenced by photoperiod and heat stress. Heat stress during gestation in particular affects pregnancy, resulting in long-term developmental damage to the offspring. This review summarizes what is known about how heat stress on the pregnant sow affects lactation and her offspring. Sows responded to heat stress during gestation with increased rectal temperature, respiration rate, and skin temperature, and tended to reduce their activity-which may have changed their body composition, increasing the adipose-to-muscle ratio. Heat stress during gestation caused temporary insulin resistance during lactation, but this metabolic state did not seem to affect health, lactation, or rebreeding performance of the sow. Heat-stressed sows also presented with a shorter gestation period and reduced litter birth weight, although weaning weights are not affected when these sows are moved to thermoneutral conditions for lactation. The offspring of gestational heat-stressed sows, however, possessed unique phenotypes, including elevated body temperature, greater fat deposition, and impaired gonad development. Thus, gestational heat stress may significantly impact a herd through its effects on sows and their offspring. Further work is necessary to determine the magnitude of the effects across fa cilities and breeds.

Journal ArticleDOI
TL;DR: The hypothesis that pregnancy and lactation are sensitive to low‐dose xenoestrogen exposures is supported, as observations of nursing behavior collected during the lactational period revealed stage‐specific effects on both pup and maternal nursing behaviors.
Abstract: High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pups were less likely to initiate nursing. Pup growth and development were also stunted. These data indicate that low doses of BPS can alter lactational behaviors and the maternal mammary gland. Together, they support the hypothesis that pregnancy and lactation are sensitive to low-dose xenoestrogen exposures.

Journal ArticleDOI
R. Michael Akers1
TL;DR: The explosion of tools and techniques has driven an almost overwhelming evaluation of cellular and molecular functions in the mammary gland and other tissues, and scientists can now better appreciate the difficulty of the dairy farmer seeking to process DHIA or Dairy Comp 305 data, milking data, weights, feeding reports, pedometer readings, or genomic evaluations.

Journal ArticleDOI
TL;DR: The murine model allowed the visualization, isolation, and Polymerase Chain Reaction (PCR)-detection of the transformed bacteria in different body locations, including mammary tissue and milk, reinforcing the hypothesis that physiological translocation of maternal bacteria during pregnancy and lactation may contribute to the composition of the mammary and milk microbiota.
Abstract: The human milk microbiota is a complex and diverse ecosystem that seems to play a relevant role in the mother-to-infant transmission of microorganisms during early life. Bacteria present in human milk may arise from different sources, and recent studies suggest that at least some of them may be originally present in the maternal digestive tract and may reach the mammary gland through an endogenous route during pregnancy and lactation. The objective of this work was to elucidate whether some lactic acid bacteria are able to translocate and colonize the mammary gland and milk. For this purpose, two lactic acid bacteria strains (Lactococcus lactis MG1614 and Lactobacillus salivarius PS2) were transformed with a plasmid containing the lux genes; subsequently, the transformed strains were orally administered to pregnant mice. The murine model allowed the visualization, isolation, and Polymerase Chain Reaction (PCR)-detection of the transformed bacteria in different body locations, including mammary tissue and milk, reinforcing the hypothesis that physiological translocation of maternal bacteria during pregnancy and lactation may contribute to the composition of the mammary and milk microbiota.

Journal ArticleDOI
TL;DR: Investigation of relationships between levels of immune mediators in colostrum and mature milk and infant outcomes in the first year of life suggests differences in the individual immune composition of HM may have an influence on early life infant health outcomes.
Abstract: The role of breastfeeding in improving allergy outcomes in early childhood is still unclear. Evidence suggests that immune mediators in human milk (HM) play a critical role in infant immune maturation as well as protection against atopy/allergy development. We investigated relationships between levels of immune mediators in colostrum and mature milk and infant outcomes in the first year of life. In a large prospective study of 398 pregnant/lactating women in the United Kingdom, Russia and Italy, colostrum and mature human milk (HM) samples were analysed for immune active molecules. Statistical analyses used models adjusting for the site of collection, colostrum collection time, parity and maternal atopic status. Preliminary univariate analysis showed detectable interleukin (IL) 2 and IL13 in HM to be associated with less eczema. This finding was further confirmed in multivariate analysis, with detectable HM IL13 showing protective effect OR 0.18 (95% CI 0.04–0.92). In contrast, a higher risk of eczema was associated with higher HM concentrations of transforming growth factor β (TGFβ) 2 OR 1.04 (95% CI 1.01–1.06) per ng/mL. Parental-reported food allergy was reported less often when IL13 was detectable in colostrum OR 0.10 (95% CI 0.01–0.83). HM hepatocyte growth factor (HGF) was protective for common cold incidence at 12 months OR 0.19 (95% CI 0.04–0.92) per ng/mL. Data from this study suggests that differences in the individual immune composition of HM may have an influence on early life infant health outcomes. Increased TGFβ2 levels in HM are associated with a higher incidence of reported eczema, with detectable IL13 in colostrum showing protective effects for food allergy and sensitization. HGF shows some protective effect on common cold incidence at one year of age. Future studies should be focused on maternal genotype, human milk microbiome and diet influence on human milk immune composition and both short- and long-term health outcomes in the infant.

Journal ArticleDOI
TL;DR: In the milk of Bangladeshi mothers, differences in vitamin concentrations between aliquots within feedings and by circadian variance were significant but small, and afternoon and evening collection provided the most-representative samples.
Abstract: Background: Human milk is the subject of many studies, but procedures for representative sample collection have not been established. Our improved methods for milk micronutrient analysis now enable systematic study of factors that affect its concentrations.Objective: We evaluated the effects of sample collection protocols, variations in circadian rhythms, subject variability, and acute maternal micronutrient supplementation on milk vitamin concentrations.Methods: In the BMQ (Breast-Milk-Quality) study, we recruited 18 healthy women (aged 18-26 y) in Dhaka, Bangladesh, at 2-4 mo of lactation for a 3-d supplementation study. On day 1, no supplements were given; on days 2 and 3, participants consumed ∼1 time and 2 times, respectively, the US-Canadian Recommended Dietary Allowances for vitamins at breakfast (0800-0859). Milk was collected during every feeding from the same breast over 24 h. Milk expressed in the first 2 min (aliquot I) was collected separately from the remainder (aliquot II); a third aliquot (aliquot III) was saved by combining aliquots I and II. Thiamin, riboflavin, niacin, and vitamins B-6, B-12, A, and E and fat were measured in each sample.Results: Significant but small differences (14-18%) between aliquots were found for all vitamins except for vitamins B-6 and B-12. Circadian variance was significant except for fat-adjusted vitamins A and E, with a higher contribution to total variance with supplementation. Between-subject variability accounted for most of the total variance. Afternoon and evening samples best reflected daily vitamin concentrations for all study days. Acute supplementation effects were found for thiamin, riboflavin, and vitamins B-6 and A at 2-4 h postdosing, with 0.1-6.17% passing into milk. Supplementation was reflected in fasting, 24-h postdose samples for riboflavin and vitamin B-6. Maximum amounts of dose-responding vitamins in 1 feeding ranged from 4.7% to 21.8% (day 2) and 8.2% to 35.0% (day 3) of Adequate Intake.Conclusions: In the milk of Bangladeshi mothers, differences in vitamin concentrations between aliquots within feedings and by circadian variance were significant but small. Afternoon and evening collection provided the most-representative samples. Supplementation acutely affects some breast-milk micronutrient concentrations. This trial was registered at clinicaltrials.gov as NCT02756026.

Journal ArticleDOI
TL;DR: The study data were consistent with the concept that infusion of 5- HTP to dairy cows increases blood 5-HT concentrations, which in turn is a significant regulatory component in the chain of effectors that affect calcium status around parturition, hence the occurrence of clinical or subclinical hypocalcemia.

Journal ArticleDOI
TL;DR: It is revealed that miR‐145 regulates metabolism of fatty acids in goat mammary gland epithelial cells (GMEC) and is a direct target of insulin induced gene 1 (INSIG1), which underscores the need for further studies to evaluate the potential for targeting miRNAs for improving beneficial milk components in ruminant milk.
Abstract: MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression at the post-transcriptional level to cause translational repression or degradation of targets. The profiles of miRNAs across stages of lactation in small ruminant species such as dairy goats is unknown. A small RNA library was constructed using tissue samples from mammary gland of Saanen dairy goats harvested at mid-lactation followed by sequencing via Solexa technology. A total of 796 conserved miRNAs, 263 new miRNAs, and 821 pre-miRNAs were uncovered. After comparative analyses of our sequence data with published mammary gland transcriptome data across different stages of lactation, a total of 37 miRNAs (including miR-145) had significant differences in expression over the lactation cycle. Further studies revealed that miR-145 regulates metabolism of fatty acids in goat mammary gland epithelial cells (GMEC). Compared with nonlactating mammary tissue, lactating mammary gland had a marked increase in expression of miR-145. Overexpression of miR-145 increased transcription of genes associated with milk fat synthesis resulting in greater fat droplet formation, triacylglycerol accumulation, and proportion of unsaturated fatty acids. In contrast, silencing of miR-145 impaired fatty acid synthesis. Inhibition of miR-145 increased methylation levels of fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), peroxisome proliferator-activated receptor gamma (PPARG), and sterol regulatory element binding transcription factor 1 (SREBF1). Luciferase reporter assays confirmed that insulin induced gene 1 (INSIG1) is a direct target of miR-145. These findings underscore the need for further studies to evaluate the potential for targeting miR-145 for improving beneficial milk components in ruminant milk. J. Cell. Physiol. 232: 1030-1040, 2017. © 2016 Wiley Periodicals, Inc.


Journal ArticleDOI
TL;DR: Assessment of the risk for the development of antimicrobial resistance (AMR) due to feeding on farm of calves with colostrum potentially containing residues of antibiotics and possible options to mitigate the risk, mainly based on thermal inactivation, are requested.
Abstract: EFSA was requested to: 1) assess the risk for the development of antimicrobial resistance (AMR) due to feeding on farm of calves with colostrum potentially containing residues of antibiotics; 2) assess the risk for the development of AMR due to feeding on farm of calves with milk of cows treated during lactation with an antibiotic and milked during the withdrawal period, and 3) propose possible options to mitigate the risk for the development of AMR derived from such practices. Treatment of dairy cows during the dry period and during lactation is common in the EU Member States. Penicillins, alone or in combination with aminoglycosides, and cephalosporins are most commonly used. Residue levels of antimicrobials decrease with the length of the dry period. When the interval from the start of the drying-off treatment until calving is as long as or longer than the minimum specified in the Summary of Product Characteristics of the antimicrobial, faecal shedding of antimicrobial-resistant bacteria will not increase when calves are fed colostrum from treated cows. Milk from cows receiving antimicrobial treatment during lactation contains substantial residues during the treatment and withdrawal period. Consumption of such milk will lead to increased faecal shedding of antimicrobial-resistant bacteria by calves. A range of possible options exist for restricting the feeding of such milk to calves, which could be targeting the highest priority critically important antimicrobials. β-Lactamases can reduce the concentration of β-lactams which are the most frequently used antimicrobials in milking cows. Options to mitigate the presence of resistant bacteria in raw milk or colostrum are mainly based on thermal inactivation.

Journal ArticleDOI
TL;DR: The overall biofluid and MG tissue metabolic mechanisms in the lactating cows were interpreted and are the first to provide an integrated insight and a better understanding of the metabolic mechanism of lactation, which is beneficial for developing regulated strategies to improve the metabolic status of lactating dairy cows.
Abstract: Lactation is extremely important for dairy cows; however, the understanding of the underlying metabolic mechanisms is very limited. This study was conducted to investigate the inherent metabolic patterns during lactation using the overall biofluid metabolomics and the metabolic differences from non-lactation periods, as determined using partial tissue-metabolomics. We analyzed the metabolomic profiles of four biofluids (rumen fluid, serum, milk and urine) and their relationships in six mid-lactation Holstein cows and compared their mammary gland (MG) metabolomic profiles with those of six non-lactating cows by using gas chromatography-time of flight/mass spectrometry. In total, 33 metabolites were shared among the four biofluids, and 274 metabolites were identified in the MG tissues. The sub-clusters of the hierarchical clustering analysis revealed that the rumen fluid and serum metabolomics profiles were grouped together and highly correlated but were separate from those for milk. Urine had the most different profile compared to the other three biofluids. Creatine was identified as the most different metabolite among the four biofluids (VIP = 1.537). Five metabolic pathways, including gluconeogenesis, pyruvate metabolism, the tricarboxylic acid cycle (TCA cycle), glycerolipid metabolism, and aspartate metabolism, showed the most functional enrichment among the four biofluids (false discovery rate 2). Clear discriminations were observed in the MG metabolomics profiles between the lactating and non-lactating cows, with 54 metabolites having a significantly higher abundance (P 1) in the lactation group. Lactobionic acid, citric acid, orotic acid and oxamide were extracted by the S-plot as potential biomarkers of the metabolic difference between lactation and non-lactation. The TCA cycle, glyoxylate and dicarboxylate metabolism, glutamate metabolism and glycine metabolism were determined to be pathways that were significantly impacted (P 0.1) in the lactation group. Among them, the TCA cycle was the most up-regulated pathway (P < 0.0001), with 7 of the 10 related metabolites increased in the MG tissues of the lactating cows. The overall biofluid and MG tissue metabolic mechanisms in the lactating cows were interpreted in this study. Our findings are the first to provide an integrated insight and a better understanding of the metabolic mechanism of lactation, which is beneficial for developing regulated strategies to improve the metabolic status of lactating dairy cows.

Journal ArticleDOI
TL;DR: Animal studies show that the lactation period contributes to metabolic programming of the offspring and that oral leptin and insulin show bioactivity and early in lactation, leptin could contribute to mediating the association between maternal and infant body composition.

Journal ArticleDOI
TL;DR: Understanding breast anatomy and lactation physiology will allow physicians to gain knowledge of the processes, which control lactation enabling physicians to appropriately manage the breastfeeding dyad.

Journal ArticleDOI
TL;DR: It was concluded that dramatic changes in energy and lysine requirements and balances occur during transition and lactation; that sows with high milk yield and /or low live weight require high SID lysines: ME ratio and that it would be beneficial to feed sowsWith two components at each meal to match the daily requirements for maintenance and production.

Journal ArticleDOI
TL;DR: Results from this experiment indicate that replacing CH with CA supplemented at 3 mg/d during the prepartum period improved postpartum lactation performance in dairy cows.