scispace - formally typeset
Search or ask a question

Showing papers on "LIGO published in 2017"


Journal ArticleDOI
TL;DR: In this article, a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim$1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg$^2$ at a luminosity distance of $40^{+8}_{-8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim$40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over $\sim$10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim$9 and $\sim$16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged)

3,180 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the observed time delay of $(+1.74 \pm 0.05 ) between GRB 170817A and GW170817 to constrain the difference between speed of gravity and the speed of light.
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the observed time delay of $(+1.74 \pm 0.05)\,$s between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times 10^{-15}$ and $+7\times 10^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1--1.4 per year during the 2018-2019 observing run and 0.3--1.7 per year at design sensitivity.

2,071 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1113 moreInstitutions (117)
TL;DR: For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.
Abstract: On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M⊙ and 25.3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

1,979 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1319 moreInstitutions (78)
02 Nov 2017-Nature
TL;DR: A measurement of the Hubble constant is reported that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data.
Abstract: On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source4, 5, 6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8, 9, 10, 11, 12, 13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’14, 15, 16, 17, 18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20, 21, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

892 citations


Journal ArticleDOI
22 Dec 2017-Science
TL;DR: A rapid astronomical search located the optical counterpart of the neutron star merger GW170817 and shows how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Abstract: On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer detected gravitational waves (GWs) emanating from a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) telescopes detected a gamma-ray transient, GRB 170817A. At 10.9 hours after the GW trigger, we discovered a transient and fading optical source, Swope Supernova Survey 2017a (SSS17a), coincident with GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40 megaparsecs. The precise location of GW170817 provides an opportunity to probe the nature of these cataclysmic events by combining electromagnetic and GW observations.

880 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that the signal waveform is consistent with the predictions of general relativity and verify that the signals from the merger of two stellar-mass black holes in the LIGO detectors are consistent with these predictions.
Abstract: On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.

872 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +719 moreInstitutions (86)
Abstract: The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.

796 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the INTernational Gamma-ray Astrophysics Laboratory (INTEGRAL) detection of the short gamma-ray burst GRB 170817A (discovered by Fermi-GBM) with a signal-to-noise ratio of 4.6, and, for the first time, its association with the gravitational waves from binary neutron star (BNS) merging event GW170817 detected by the LIGO and Virgo observatories.
Abstract: We report the INTernational Gamma-ray Astrophysics Laboratory (INTEGRAL) detection of the short gamma-ray burst GRB 170817A (discovered by Fermi-GBM) with a signal-to-noise ratio of 4.6, and, for the first time, its association with the gravitational waves (GWs) from binary neutron star (BNS) merging event GW170817 detected by the LIGO and Virgo observatories. The significance of association between the gamma-ray burst observed by INTEGRAL and GW170817 is 3.2σ, while the association between the Fermi-GBM and INTEGRAL detections is 4.2σ. GRB 170817A was detected by the SPI-ACS instrument about 2 s after the end of the GW event. We measure a fluence of (1.4 ± 0.4 ± 0.6) × 10(−)(7) erg cm(−)(2) (75–2000 keV), where, respectively, the statistical error is given at the 1σ confidence level, and the systematic error corresponds to the uncertainty in the spectral model and instrument response. We also report on the pointed follow-up observations carried out by INTEGRAL, starting 19.5 hr after the event, and lasting for 5.4 days. We provide a stringent upper limit on any electromagnetic signal in a very broad energy range, from 3 keV to 8 MeV, constraining the soft gamma-ray afterglow flux to <7.1 × 10(−)(11) erg cm(−)(2) s(−)(1) (80–300 keV). Exploiting the unique capabilities of INTEGRAL, we constrained the gamma-ray line emission from radioactive decays that are expected to be the principal source of the energy behind a kilonova event following a BNS coalescence. Finally, we put a stringent upper limit on any delayed bursting activity, for example, from a newly formed magnetar.

698 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A).
Abstract: We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared ${K}_{{\rm{s}}}$-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses $A\approx 195$). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.

600 citations


Journal ArticleDOI
TL;DR: The recent detection by Advanced LIGO of GW from the merging of a binary black hole system sets new limits on the merging rates of massive primordial black holes (PBH) that could be a significant fraction or even the totality of the dark matter in the Universe.

Journal ArticleDOI
TL;DR: In this paper, the authors examined key interactions of double-neutron star (DNS) systems and evaluated their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer.
Abstract: Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square Kilometre Array searching for radio pulsars, and the high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most $\sim 0.02\,{M}_{\odot }$. We investigate DNS masses, spins, and velocities, and in particular correlations between spin period, orbital period, and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes that may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ-ray burst.

Journal ArticleDOI
TL;DR: The Dark Energy Camera (DECam) was used to detect the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817.
Abstract: We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg(2) in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located $10\buildrel{\prime\prime}\over{.} 6$ from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for ${H}_{0}=70$ km s(−)(1) Mpc(−)(1)) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of $i=17.3$ and $z=17.4$, and thus an absolute magnitude of ${M}_{i}=-15.7$, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.

Journal ArticleDOI
TL;DR: In this paper, the authors improved the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, non-precessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveform.
Abstract: We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness—at design Advanced-LIGO sensitivity—above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios ≳4 and double spin ≳0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.

Journal ArticleDOI
TL;DR: In this paper, the impact of primordial black holes on the CMB was analyzed, and stringent constraints on models purporting to connect dark matter to primordial Black Holes were provided.
Abstract: The LIGO observation of black hole merger has revivified interest in the idea whether primordial black holes might comprise some or all of the dark matter. The authors scrutinize the impact of primordial black holes on the CMB, analytically calculating spherical accretion onto black holes. The paper provides stringent constraints on models purporting to connect dark matter to primordial black holes.

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced LIGO/Virgo (GW170817) and as a short gamma-ray burst by Fermi/GBM and Integral/SPI-ACS (GRB 170817A), which is consistent with predictions for the behaviour of a "kilonova/macronova", powered by the radioactive decay of massive neutron-rich nucl
Abstract: We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced LIGO/Virgo (GW170817) and as a short gamma-ray burst by Fermi/GBM and Integral/SPI-ACS (GRB170817A). The evolution of the transient light is consistent with predictions for the behaviour of a "kilonova/macronova", powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide dominated ejecta, and the much slower evolution in the near-infrared Ks-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the 3rd r-process peak (atomic masses A~195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major - if not the dominant - site of rapid neutron capture nucleosynthesis in the universe.

Journal ArticleDOI
TL;DR: In this article, the authors explore the evolution of stellar mass black hole binaries (BHBs) which are formed in the self-gravitating disks of active galactic nuclei (AGN).
Abstract: We explore the evolution of stellar mass black hole binaries (BHBs) which are formed in the self-gravitating disks of active galactic nuclei (AGN). Hardening due to three-body scattering and gaseous drag are effective mechanisms that reduce the semi-major axis of a BHB to radii where gravitational waves take over, on timescales shorter than the typical lifetime of the AGN disk. Taking observationally-motivated assumptions for the rate of star formation in AGN disks, we find a rate of disk-induced BHB mergers ($\mathcal{R} \sim 3~{\rm yr}^{-1}~{\rm Gpc}^{-3}$, but with large uncertainties) that is comparable with existing estimates of the field rate of BHB mergers, and the approximate BHB merger rate implied by the recent Advanced LIGO detection of GW150914. BHBs formed thorough this channel will frequently be associated with luminous AGN, which are relatively rare within the sky error regions of future gravitational wave detector arrays. This channel could also possess a (potentially transient) electromagnetic counterpart due to super-Eddington accretion onto the stellar mass black hole following the merger.

Journal ArticleDOI
TL;DR: The first detection of X-ray emission from a binary neutron star (BNS) merger event GW170817 is reported in this article, where the authors interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis).
Abstract: We report the discovery of rising X-ray emission from the binary neutron star (BNS) merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave source. Observations acquired with the Chandra X-ray Observatory (CXO) at t~2.3 days post merger reveal no significant emission, with L_x<=3.2x10^38 erg/s (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching L_x\\sim 9x10^39 erg/s at ~15.1 days post merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broad-band X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy E_k~10^49-10^50 erg, viewed off-axis with theta_obs~ 20-40 deg. Our models favor a circumbinary density n~ 0.0001-0.01 cm-3, depending on the value of the microphysical parameter epsilon_B=10^{-4}-10^{-2}. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $t\\gtrsim 100$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on theta_obs are testable with gravitational wave information on GW170817 from Advanced LIGO/Virgo on the binary inclination.

Journal ArticleDOI
TL;DR: The first detection of X-ray emission from a binary neutron star (BNS) merger event GW170817 is reported in this article, where the authors interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis).
Abstract: We report the discovery of rising X-ray emission from the binary neutron star (BNS) merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave source. Observations acquired with the Chandra X-ray Observatory (CXO) at t~2.3 days post merger reveal no significant emission, with L_x<=3.2x10^38 erg/s (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching L_x\sim 9x10^39 erg/s at ~15.1 days post merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broad-band X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy E_k~10^49-10^50 erg, viewed off-axis with theta_obs~ 20-40 deg. Our models favor a circumbinary density n~ 0.0001-0.01 cm-3, depending on the value of the microphysical parameter epsilon_B=10^{-4}-10^{-2}. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $t\gtrsim 100$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on theta_obs are testable with gravitational wave information on GW170817 from Advanced LIGO/Virgo on the binary inclination.

Journal ArticleDOI
TL;DR: In this article, the authors examined the fate of binary black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole and showed that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time.
Abstract: The Laser Interferometer Gravitational-Wave Observatory, LIGO, found direct evidence for double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes. A significant fraction ( 30%) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few percent radiative efficiency, comparable to thin disks. We discuss implications for gravitational wave observations and black hole population studies. We estimate that Advanced LIGO may detect 20 such, gas-induced binary mergers per year.

Journal ArticleDOI
Marcelle Soares-Santos1, Daniel E. Holz, J. Annis, R. Chornock, K. Herner, Edo Berger, D. J. Brout, Huanqing Chen, Richard Kessler, M. Sako, S. Allam, Douglas L. Tucker, R. E. Butler, Antonella Palmese, Z. Doctor, H. T. Diehl, Josh Frieman, B. Yanny, Huan Lin, Daniel Scolnic, Philip S. Cowperthwaite, Eric H. Neilsen, J. P. Marriner, N. Kuropatkin, W. G. Hartley, F. Paz-Chinchón, Kate D. Alexander, Eduardo Balbinot, P. K. Blanchard, Duncan A. Brown, Jeffrey L. Carlin, C. J. Conselice, Edward R. Cook, Alex Drlica-Wagner, Maria R. Drout, Florence Durret, Tarraneh Eftekhari, Ben Farr, D. A. Finley, Ryan J. Foley, Wen-fai Fong, Chris L. Fryer, Juan Garcia-Bellido, M. S. S. Gill, Robert A. Gruendl, Chad Hanna, Dan Kasen, Tianjun Li, Paulo A. A. Lopes, A. C. C. Lourenço, Raffaella Margutti, Jennifer L. Marshall, Thomas Matheson, G. E. Medina, Brian D. Metzger, Ricardo R. Muñoz, J. Muir, Matt Nicholl, Eliot Quataert, Armin Rest, M. Sauseda, David J. Schlegel, L. F. Secco, Flavia Sobreira, Albert Stebbins, V. A. Villar, Alistair R. Walker, W. C. Wester, Peter K. G. Williams, Alfredo Zenteno, Y. Zhang, T. M. C. Abbott, F. B. Abdalla, M. Banerji, Keith Bechtol, A. Benoit-Lévy, E. Bertin, David J. Brooks, E. Buckley-Geer, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, Martin Crocce, Carlos E. Cunha, C. B. D'Andrea, L. N. da Costa, Christopher J. Davis, S. Desai, J. P. Dietrich, P. Doel, T. F. Eifler, Enrique J. Fernández, B. Flaugher, P. Fosalba, Enrique Gaztanaga, D. W. Gerdes, Tommaso Giannantonio, David Goldstein, Daniel Gruen, J. Gschwend, G. Gutierrez, K. Honscheid, Bhuvnesh Jain, David J. James, T. Jeltema, Marvin Johnson, Michael D. Johnson, Steve Kent, Elisabeth Krause, Richard G. Kron, K. Kuehn, S. E. Kuhlmann, O. Lahav, Marcos Lima, M. A. G. Maia, M. March, Richard G. McMahon, Felipe Menanteau, Ramon Miquel, Joseph J. Mohr, Robert C. Nichol, B. Nord, R. L. C. Ogando, Don Petravick, A. A. Plazas, A. K. Romer, A. Roodman, E. S. Rykoff, E. J. Sanchez, V. Scarpine, Michael Schubnell, I. Sevilla-Noarbe, M. N. K. Smith, R. C. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, Daniel Thomas, R. C. Thomas, Michael Troxel, Vinu Vikram, Risa H. Wechsler, Jochen Weller 
TL;DR: In this paper, the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817, was detected near the nucleus of NGC\,4993 at redshift $z=0.0098.
Abstract: We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg$^2$ in the $i$ and $z$ bands, covering 93\% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located $10.6''$ from the nucleus of NGC\,4993 at redshift $z=0.0098$, consistent (for $H_0 = 70$\, km s$^{-1}$ Mpc$^{-1}$) with the distance of $40 \pm 8$\, Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes $i\approx 17.30$ and $z\approx 17.45$, and thus an absolute magnitude of $M_i = -15.7$, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC\,4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5\% confidence level. We therefore conclude that the optical counterpart we have identified near NGC\,4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.

Journal ArticleDOI
TL;DR: In this paper, the authors compute the probability distribution of orbital parameters for primordial black holes (PBHs) formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations.
Abstract: Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the $\ensuremath{\sim}20--100\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$ mass range PBH binaries were recently suggested as the possible source of LIGO's first detections In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter As a consequence, LIGO would constrain $\ensuremath{\sim}10--300\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$ PBHs to constitute no more than $\ensuremath{\sim}1%$ of the dark matter To make this conclusion fully robust, though, numerical study of several complex astrophysical processes---such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary---is needed

Journal ArticleDOI
TL;DR: In this paper, the authors present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced LIGO/Virgo.
Abstract: We present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced LIGO/Virgo. Our dataset comprises seven epochs of J+H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, including spectral peaks near 1.07 and 1.55 microns. Our fiducial model with 0.04 M_sun of ejecta, an ejection velocity of v=0.1c, and a lanthanide concentration of X_lan=1e-2 provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 d after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r-process elements.

Journal ArticleDOI
TL;DR: In this article, the photometric and spectroscopic evolution of a new optical transient (DLT17ck) is reported, which is spatially and temporally coincident with GW170817.
Abstract: During the second observing run of the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), quickly followed by a coincident short gamma-ray burst trigger detected by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey that fell within the combined LIGO+Virgo localization region and the larger Fermi gamma-ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a, it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck is unique, with an absolute peak magnitude of M ( )r( ) = −15.8 ± 0.1 and an r-band decline rate of 1.1 mag day(−)(1). This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data does not show any sign of transient activity at the location of DLT17ck down to r ∼ 19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy, opening a new path by which to study and understand binary neutron star coalescences, short gamma-ray bursts, and their optical counterparts.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\,170817, the first LIGO/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart.
Abstract: We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter ($13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $\gtrsim 10^{48}$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $\gtrsim 20^{\circ}$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $\sim 10^{49}-10^{50}$ erg that exploded in a uniform density environment with $n\sim 10^{-4}-10^{-2}$ cm$^{-3}$, viewed at an angle of $\sim 20^{\circ}-40^{\circ}$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $\sim 5-10$ years that will remain detectable for decades with next-generation radio facilities, making GW\,170817 a compelling target for long-term radio monitoring.

Journal ArticleDOI
TL;DR: In this article, the authors used 2-tailed Gaussian probability to assign a significance to a p-value, e.g., 0.68% and 95% correspond to 0.1% and 2.5% respectively.
Abstract: In classical general relativity (GR), an observer falling into an astrophysical black hole is not expected to experience anything dramatic as she crosses the event horizon. However, tentative resolutions to problems in quantum gravity, such as the cosmological constant problem, or the black hole information paradox, invoke significant departures from classicality in the vicinity of the horizon. It was recently pointed out that such near-horizon structures can lead to late-time echoes in the black hole merger gravitational wave signals that are otherwise indistinguishable from GR. We search for observational signatures of these echoes in the gravitational wave data released by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), following the three black hole merger events GW150914, GW151226, and LVT151012. In particular, we look for repeating damped echoes with time delays of $8M\mathrm{log}M$ ($+\text{spin}$ corrections, in Planck units), corresponding to Planck-scale departures from GR near their respective horizons. Accounting for the ``look elsewhere'' effect due to uncertainty in the echo template, we find tentative evidence for Planck-scale structure near black hole horizons at false detection probability of 1% (corresponding to $2.5\ensuremath{\sigma}$. significance level). Future observations from interferometric detectors at higher sensitivity, along with more physical echo templates, will be able to confirm (or rule out) this finding, providing possible empirical evidence for alternatives to classical black holes, such as in ``firewall'' or ``fuzzball'' paradigms.In this paper, we use 2-tailed Gaussian probability to assign a significance to a p-value, e.g., $1\ensuremath{-}\mathrm{p}\text{-value}=68%$ and 95% correspond to $1\ensuremath{\sigma}$ and $2\ensuremath{\sigma}$, respectively.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, Richard J. Abbott2, T. D. Abbott3  +1064 moreInstitutions (117)
TL;DR: This work performs a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run, and constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence.
Abstract: A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω 0 < 1.7 × 10 − 7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20–86 Hz). This is a factor of ∼ 33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

Journal ArticleDOI
TL;DR: An innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors is described and a combined method with the aim of improving the efficiency and accuracy of each individual classifier is created.
Abstract: With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual classifier. The resulting classification and characterization should help LIGO scientists to identify causes of glitches and subsequently eliminate them from the data or the detector entirely, thereby improving the rate and accuracy of gravitational-wave observations. We demonstrate these methods using a small subset of data from LIGO's first observing run.

Journal ArticleDOI
TL;DR: The rapid binary population synthesis code COMPAS is used to show that all three events can be explained by a single evolutionary channel—classical isolated binary evolution via mass transfer including a common envelope phase.
Abstract: During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel-classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively.

Journal ArticleDOI
TL;DR: In this paper, the authors study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution.
Abstract: We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other current constraint in the PBH mass range 0.5−30M⊙. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.