scispace - formally typeset
Search or ask a question

Showing papers on "Magnetic dipole published in 2011"


Journal ArticleDOI
TL;DR: The authors showed that Lanthanum aluminate and strontium titanate are insulators, but when they bring them together, the interface between them becomes a two-dimensional superconductor.
Abstract: Lanthanum aluminate and strontium titanate are insulators, but when you bring them together, the interface between them becomes a two-dimensional superconductor. Even more surprising, magnetometry and transport measurements show that this superconducting state coexists with magnetic order.

719 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the functionalities of spinwave devices, concepts for spin-wave based computing and magnonic crystals is presented. But the focus of this review is on the control over the interplay between localization and delocalization of the spinwave modes using femtosecond lasers.
Abstract: Novel material properties can be realized by designing waves' dispersion relations in artificial crystals. The crystal's structural length scales may range from nano- (light) up to centimeters (sound waves). Because of their emergent properties these materials are called metamaterials. Different to photonics, where the dielectric constant dominantly determines the index of refraction, in a ferromagnet the spin-wave index of refraction can be dramatically changed already by the magnetization direction. This allows a different flexibility in realizing dynamic wave guides or spin-wave switches. The present review will give an introduction into the novel functionalities of spin-wave devices, concepts for spin-wave based computing and magnonic crystals. The parameters of the magnetic metamaterials are adjusted to the spin-wave k-vector such that the magnonic band structure is designed. However, already the elementary building block of an antidot lattice, the singular hole, owns a strongly varying internal potential determined by its magnetic dipole field and a localization of spin-wave modes. Photo-magnonics reveal a way to investigate the control over the interplay between localization and delocalization of the spin-wave modes using femtosecond lasers, which is a major focus of this review. We will discuss the crucial parameters to realize free Bloch states and how, by contrast, a controlled localization might allow to gradually turn on and manipulate spin-wave interactions in spin-wave based devices in the future.

607 citations


Journal ArticleDOI
TL;DR: In this paper, a review of spin-wave properties and properties is presented, where the crucial parameters to realize free Bloch states and how, by contrast, a controlled localization might allow us to gradually turn on and manipulate spinwave interactions in spinwave based devices in the future.

604 citations


Journal ArticleDOI
TL;DR: In this paper, a self-consistent model that directly connects the properties of the central engine to the observed prompt emission was proposed, which predicts a relatively constant 'Band' spectral peak energy E peak with time during the gamma-ray burst.
Abstract: Long duration gamma-ray bursts (GRBs) originate from the core collapse of massive stars, but the identity of the central engine remains elusive. Previous work has shown that rapidly spinning, strongly magnetized protoneutron stars ('millisecond protomagnetars') produce outflows with energies, time-scales and magnetizations σ 0 (maximum Lorentz factor) that are consistent with those required to produce long duration GRBs. Here we extend this work in order to construct a self-consistent model that directly connects the properties of the central engine to the observed prompt emission. Just after the launch of the supernova shock, a wind heated by neutrinos is driven from the protomagnetar. The outflow is collimated into a bipolar jet by its interaction with the progenitor star. As the magnetar cools, the wind becomes ultrarelativistic and Poynting flux dominated (σ 0 >> 1) on a time-scale comparable to that required for the jet to clear a cavity through the star. Although the site and mechanism of the prompt emission are debated, we calculate the emission predicted by two models: magnetic dissipation and shocks. Magnetic reconnection may occur near the photosphere if the outflow develops an alternating field structure due to e.g. magnetic instabilities or a misalignment between the magnetic and rotation axes. Shocks may occur at larger radii because the Lorentz factor of the wind increases with time, such that the faster jet at late times collides with slower material released earlier. Our results favour magnetic dissipation as the prompt emission mechanism, in part because it predicts a relatively constant 'Band' spectral peak energy E peak with time during the GRB. The baryon loading of the jet decreases abruptly when the neutron star becomes transparent to neutrinos at t = t v-thin ~ 10-100 s. Jets with ultrahigh magnetization cannot effectively accelerate and dissipate their energy, which suggests this transition ends the prompt emission. This correspondence may explain both the typical durations of long GRBs and the steep decay phase that follows. Residual rotational or magnetic energy may continue to power late time flaring or afterglow emission, such as the X-ray plateau. We quantify the emission predicted from protomagnetars with a wide range of physical properties (initial rotation period, surface dipole field strength and magnetic obliquity) and assess a variety of phenomena potentially related to magnetar birth, including low-luminosity GRBs, very luminous GRBs, thermal-rich GRBs/X-ray flashes, very luminous supernovae and short-duration GRBs with extended emission.

593 citations


Journal ArticleDOI
TL;DR: In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space, demonstrating substantial improvement in background field removal compared with the commonly used high‐pass filtering method.
Abstract: For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method.

389 citations


Journal ArticleDOI
TL;DR: The extracted E1 polarizability leads to a neutron skin thickness close to that of a neutron star, thereby constraining the symmetry energy and its density dependence relevant to the description of neutron stars.
Abstract: A benchmark experiment on Pb-208 shows that polarized proton inelastic scattering at very forward angles including 0 degrees is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r(skin) = 0.156(-0.021)(+0.025) fm in Pb-208 derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence relevant to the description of neutron stars.

362 citations


Journal ArticleDOI
TL;DR: In this article, the role of multipole modes in the extinction and scattering spectra of arbitrary shaped nanoparticles is analyzed in the framework of the discrete dipole approximation, and the main attention is given to the first multipoles including magnetic dipole and electric quadrupole moments.
Abstract: In the framework of the discrete dipole approximation we develop a theoretical approach that allows the analysis of the role of multipole modes in the extinction and scattering spectra of arbitrary shaped nanoparticles. The main attention is given to the first multipoles including magnetic dipole and electric quadrupole moments. The role of magnetic quadrupole and electric octupole modes is also discussed. The method is applied to nonspherical Si nanoparticles with resonant multipole responses in the visible optical range, allowing a decomposition of single extinction (scattering) peaks into their constituent multipole contributions. It is shown by numerical simulations that it is possible to design silicon particles for which the electric dipole and magnetic dipole resonances are located at the same wavelength under certain propagation directions of incident light, providing new possibilities in metamaterial developments.

317 citations


Journal ArticleDOI
TL;DR: In this article, a wide window in the near-infrared (wavelengths 1t o 3μm) where light scattering by lossless submicrometer Ge spherical particles is fully described by their induced electric and magnetic dipoles was found.
Abstract: Thecoherentcombinationofelectricandmagneticresponsesisthebasisoftheelectro- magnetic behavior of new engineered metamaterials. The basic constituents of their meta-atoms usually have metallic character and consequently high absorption losses. Based on standard "Mie" scattering theory, we found that there is a wide window in the near-infrared (wavelengths 1t o 3μm), where light scattering by lossless submicrometer Ge spherical particles is fully described by their induced electric and magnetic dipoles. The interference between electric and magneticdipolarfieldsisshowntoleadtoanisotropicangulardistributionsofscatteredintensity, including zero backward and almost zero forward scattered intensities at specific wavelengths, which until recently was theoretically established only for hypothetically postulated magnetodi- electric spheres. Although the scattering cross section at zero backward or forward scattering is exactly the same, radiation pressure forces are a factor of 3 higher in the zero forward condition.

220 citations


Journal ArticleDOI
TL;DR: In this article, a power relay system based on a near-field metamaterial superlens is proposed and a thorough theoretical analysis of this system is presented. But the authors do not consider the nonradiative coupling between conductive coils.
Abstract: Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio.

192 citations


Journal ArticleDOI
TL;DR: In this paper, the scattering cross sections of submicrometer Germanium spheres were analyzed and the effects of optical forces on these objects were investigated. But the authors focused on the effect of the optical forces exerted on these spheres.
Abstract: We address the scattering cross sections, and their consequences, for submicrometer Germanium spheres. It is shown that there is a wide window in the near infrared where light scattering by these particles is fully described by their induced electric and magnetic dipoles. In this way, we observe remarkable anisotropic scattering angular distributions, as well as zero forward or backward scattered intensities, which until recently was theoretically demonstrated only for hypothetically postulated magnetodielectric spheres. Also, interesting new effects of the optical forces exerted on these objects are now obtained.

173 citations


Journal ArticleDOI
TL;DR: In this article, a new homogenization framework for magnetoelastic composites accounting for the effect of magnetic dipole interactions, as well as finite strains, was proposed, which is capable of handling strongly nonlinear effects associated with finite strains and magnetic saturation of the particles at sufficiently high deformations and magnetic fields, respectively.
Abstract: This paper proposes a new homogenization framework for magnetoelastic composites accounting for the effect of magnetic dipole interactions, as well as finite strains. In addition, it provides an application for magnetorheological elastomers via a “partial decoupling” approximation splitting the magnetoelastic energy into a purely mechanical component, together with a magnetostatic component evaluated in the deformed configuration of the composite, as estimated by means of the purely mechanical solution of the problem. It is argued that the resulting constitutive model for the material, which can account for the initial volume fraction, average shape, orientation and distribution of the magnetically anisotropic, non-spherical particles, should be quite accurate at least for perfectly aligned magnetic and mechanical loadings. The theory predicts the existence of certain “extra” stresses—arising in the composite beyond the purely mechanical and magnetic (Maxwell) stresses—which can be directly linked to deformation-induced changes in the microstructure. For the special case of isotropic distributions of magnetically isotropic, spherical particles, the extra stresses are due to changes in the particle two-point distribution function with the deformation, and are of order volume fraction squared, while the corresponding extra stresses for the case of aligned, ellipsoidal particles can be of order volume fraction, when changes are induced by the deformation in the orientation of the particles. The theory is capable of handling the strongly nonlinear effects associated with finite strains and magnetic saturation of the particles at sufficiently high deformations and magnetic fields, respectively.

Journal ArticleDOI
TL;DR: It is demonstrated that magnetic dipole transitions provide an additional degree of freedom for engineering emission spectra and how a simple gold mirror can strongly tune the emission of trivalent europium without the need for a high-quality optical cavity.
Abstract: We demonstrate that magnetic dipole transitions provide an additional degree of freedom for engineering emission spectra. Without the need for a high-quality optical cavity, we show how a simple gold mirror can strongly tune the emission of trivalent europium. We exploit the differing field symmetries of electric and magnetic dipoles to selectively direct the majority of emission through each of three major transitions (centered at 590, 620, and 700 nm), and present a model that accurately predicts this tuning from the local electric and magnetic density of optical states.

Journal ArticleDOI
TL;DR: A phenomenological theory of current-induced staggered magnetization dynamics in antiferromagnets is derived, which captures the reactive and dissipative current- induced torques and the conventional effects of magnetic fields and damping.
Abstract: We derive a phenomenological theory of current-induced staggered magnetization dynamics in antiferromagnets. The theory captures the reactive and dissipative current-induced torques and the conventional effects of magnetic fields and damping. A Walker ansatz describes the dc current-induced domain-wall motion when there is no dissipation. If magnetic damping and dissipative torques are included, the Walker ansatz remains robust when the domain wall moves slowly. As in ferromagnets, the domain-wall velocity is proportional to the ratio between the dissipative torque and the magnetization damping. In addition, a current-driven antiferromagnetic domain wall acquires a net magnetic moment.

Journal ArticleDOI
TL;DR: In this paper, it was shown that applying a magnetic field pulse to a Dy2Ti2O7 spin-ice crystal at 0.36 K creates a relaxing magnetic current that lasts for several minutes.
Abstract: The recent discovery of ‘magnetricity’ in spin ice raises the question of whether long-lived currents of magnetic ‘monopoles’ can be created and manipulated by applying magnetic fields. Here we show that they can. By applying a magnetic-field pulse to a Dy2Ti2O7 spin-ice crystal at 0.36 K, we create a relaxing magnetic current that lasts for several minutes. We measure the current by means of the electromotive force it induces in a solenoid coupled to a sensitive amplifier, and quantitatively describe it using a chemical kinetic model of point-like charges obeying the Onsager–Wien mechanism of carrier dissociation and recombination. We thus derive the microscopic parameters of monopole motion in spin ice and identify the distinct roles of free and bound magnetic charges. Our results illustrate a basic capacitor effect for magnetic charge and should pave the way for the design and realization of ‘magnetronic’ circuitry.

Journal ArticleDOI
25 Nov 2011-Science
TL;DR: The observation of a permanent electric dipole moment in a homonuclear molecule in which the binding is based on asymmetric electronic excitation between the atoms is reported.
Abstract: Permanent electric dipole moments in molecules require a breaking of parity symmetry. Conventionally, this symmetry breaking relies on the presence of heteronuclear constituents. We report the observation of a permanent electric dipole moment in a homonuclear molecule in which the binding is based on asymmetric electronic excitation between the atoms. These exotic molecules consist of a ground-state rubidium (Rb) atom bound inside a second Rb atom electronically excited to a high-lying Rydberg state. Detailed calculations predict appreciable dipole moments on the order of 1 Debye, in excellent agreement with the observations.

Journal ArticleDOI
TL;DR: Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control.
Abstract: We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control.

Journal ArticleDOI
01 Jul 2011-ACS Nano
TL;DR: A three-dimensional plasmonic nanostructure that exhibits a strong and isotropic magnetic response in the visible spectral domain and is sufficiently small to be perceived as an individual object in the far field is theoretically analyzed and characterized.
Abstract: We theoretically analyze, fabricate, and characterize a three-dimensional plasmonic nanostructure that exhibits a strong and isotropic magnetic response in the visible spectral domain. Using two different bottom-up approaches that rely on self-organization and colloidal nanochemistry, we fabricate clusters consisting of dielectric core spheres, which are smaller than the wavelength of the incident radiation and are decorated by a large number of metallic nanospheres. Hence, despite having a complicated inner geometry, such a core–shell particle is sufficiently small to be perceived as an individual object in the far field. The optical properties of such complex plasmonic core–shell particles are discussed for two different core diameters.

Journal ArticleDOI
TL;DR: In this article, the authors examined the structure of the magnetosphere using a 3D isothermal magnetohydrodynamic model that includes a static dead zone near the magnetic equator containing gas confined by the magnetic field, a wind zone outside the magnetic axis in which thermal pressure gradients and the magneto-centrifugal-tidal effect give rise to a transonic outflow, and a region near the poles where sufficiently strong tidal forces may suppress transonic flow.
Abstract: The upper atmospheres of close-in gas giant exoplanets (hot Jupiters) are subjected to intense heating and tidal forces from their parent stars. The atomic (H) and ionized (H+) hydrogen layers are sufficiently rarefied that magnetic pressure may dominate gas pressure for expected planetary magnetic field strength. We examine the structure of the magnetosphere using a 3D isothermal magnetohydrodynamic model that includes a static dead zone near the magnetic equator containing gas confined by the magnetic field, a wind zone outside the magnetic equator in which thermal pressure gradients and the magneto-centrifugal-tidal effect give rise to a transonic outflow, and a region near the poles where sufficiently strong tidal forces may suppress transonic outflow. Using dipole field geometry, we estimate the size of the dead zone to be several to tens of planetary radii for a range of parameters. Tides decrease the size of the dead zone, while allowing the gas density to increase outward where the effective gravity is outward. In the wind zone, the rapid decrease of density beyond the sonic point leads to smaller densities relative to the neighboring dead zone, which is in hydrostatic equilibrium. To understand the appropriate base conditions for the 3D isothermal model, we compute a simple 1D thermal model in which photoelectric heating from the stellar Lyman continuum is balanced by collisionally excited Lyα cooling. This 1D model exhibits a H layer with temperature T 5000-10,000 K down to a pressure P ~ 10-100 nbar. Using the 3D isothermal model, we compute maps of the H column density as well as the Lyα transmission spectra for parameters appropriate for HD 209458b. Line-integrated transit depths 5%-10% can be achieved for the above base conditions, in agreement with the results of Koskinen et al. A deep, warm H layer results in a higher mass-loss rate relative to that for a more shallow layer, roughly in proportion to the base pressure. Strong magnetic fields have the effect of increasing the transit signal while decreasing the mass loss, due to higher covering fraction and density of the dead zone. Absorption due to bulk fluid velocity is negligible at linewidths 100 km s-1 from line center. In our model, most of the transit signal arises from magnetically confined gas, some of which may be outside the L1 equipotential. Hence, the presence of gas outside the L1 equipotential does not directly imply mass loss. We verify a posteriori that particle mean free paths and ion-neutral drift are small in the region of interest in the atmosphere, and that flux freezing is a good approximation. We suggest that resonant scattering of Lyα by the magnetosphere may be observable due to the Doppler shift from the planet's orbital motion, and may provide a complementary probe of the magnetosphere. Lastly, we discuss the domain of applicability for the magnetic wind model described in this paper as well as the Roche-lobe overflow model.

Journal ArticleDOI
TL;DR: In this paper, spectropolarimetric observations of the TTauri star (cTTS) TWHya were carried out with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) in the framework of the Magnetic Protostars and Planets' (MaPP) programme, and obtained at two different epochs (2008 March and 2010 March).
Abstract: We report here results of spectropolarimetric observations of the ~8Myr classical TTauri star (cTTS) TWHya carried out with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) in the framework of the `Magnetic Protostars and Planets' (MaPP) programme, and obtained at 2 different epochs (2008 March and 2010 March). Obvious Zeeman signatures are detected at all times, both in photospheric lines and in accretion-powered emission lines. Significant intrinsic variability and moderate rotational modulation is observed in both photospheric and accretion proxies. Using tomographic imaging, we reconstruct maps of the large-scale field, of the photospheric brightness and of the accretion-powered emission at the surface of TWHya at both epochs. We find that the magnetic topology is mostly poloidal and axisymmetric with respect to the rotation axis of the star, and that the octupolar component of the large-scale field (2.5-2.8kG at the pole) largely dominates the dipolar component. This large-scale field topology is characteristic of partly-convective stars, supporting the conclusion (from evolutionary models) that TWHya already hosts a radiative core. We also show that TWHya features a high-latitude photospheric cool spot overlapping with the main magnetic pole (and producing the observed radial velocity fluctuations); this is also where accretion concentrates most of the time, although accretion at lower latitudes is found to occur episodically. We propose that the relatively rapid rotation of TWHya (with respect to AATau-like cTTSs) directly reflects the weakness of the large-scale dipole, no longer capable of magnetically disrupting the accretion disc up to the corotation radius (at which the Keplerian period equals the stellar rotation period). We therefore conclude that TWHya is in a phase of rapid spin-up as its large-scale dipole field progressively vanishes.

Journal ArticleDOI
TL;DR: The temperature dependence of the specific magnetic moment of anion-deficient manganite La 0.70Sr 0.30MnO2 is measured in external magnetic fields of 0-140 kOe, with the prehistory taken into account.
Abstract: The temperature dependence of the specific magnetic moment of anion-deficient manganite La0.70Sr0.30MnO2.85 is measured in external magnetic fields of 0–140 kOe, with the prehistory taken into account. The inhomogeneous magnetic state is a cluster spin glass and is the result of a redistribution of oxygen vacancies. Increasing the external magnetic field initially (H < 10 kOe) leads to breakup of the ferromagnetic clusters, and then (H ≥ 10 kOe) to a transition of the antiferromagnetic matrix into a ferromagnetic state and an increase in the degree of polarization of the local manganese spins. The freezing temperature for the magnetic moments varies as Tf = 65–6H0.21, while the temperature at which the ZFC- and FC-curves diverge varies at Trev = 250–90H0.11. The cause of and mechanism for the magnetic phase separation are discussed.

Journal ArticleDOI
M Birsan1
TL;DR: A recursive approach is proposed that is promising for estimating the trajectory and the magnetic moment components of a target modeled as a magnetic dipole source using data collected with a gradiometer using the unscented Kalman filter to generate the prior distribution of the unknown parameters.
Abstract: Previous magnetic dipole localization algorithms using gradient data attempt to find the position of the magnetic source at the measurement time only. Based on the direct inversion of the magnetic gradient tensor, these methods provide results that can be highly sensitive to temporal noise in data. To avoid a temporally scattered solution, a recursive approach is proposed that is promising for estimating the trajectory and the magnetic moment components of a target modeled as a magnetic dipole source using data collected with a gradiometer. In this study, the determination of target position, magnetic moment, and velocity is formulated as a Bayesian estimation problem for dynamic systems, which could be solved using a sequential Monte Carlo based approach known as the “particle filter.” This filter represents the posterior distribution of the state variables by a system of particles which evolve and adapt recursively as new information becomes available. In addition to the conventional particle filter, the proposed tracking and classification algorithm uses the unscented Kalman filter (UKF) to generate the prior distribution of the unknown parameters. The proposed method is then demonstrated by applying it to real data collected when an automobile was passing by a gradiometer either on a straight or a curved track. The results indicate that the recursive method is less sensitive to noise than the direct inversion solution, even if not all the components of the gradient tensor were used.

Journal ArticleDOI
TL;DR: It is shown that a simple but long-ranged anisotropy in nanoparticles' interactions can greatly enrich this scenario, and several dynamical mechanisms from which such unusual morphologies can arise are identified.
Abstract: When deposited from an evaporating solution onto a substrate, even nondescript nanoparticles can organize into intricate spatial patterns. Here we show that a simple but long-ranged anisotropy in nanoparticles' interactions can greatly enrich this scenario. In experiments with colloidal Co nanocrystals, which bear a substantial magnetic dipole, we observe assemblies quite distinct from those formed by nonmagnetic particles. Reflecting the strongly nonequilibrium nature of this process, nanocrystal aggregates also differ substantially from expected low-energy arrangements. Using coarse-grained computer simulations of dipolar nanoparticles, we have identified several dynamical mechanisms from which such unusual morphologies can arise. For particles with modest dipole moments, transient connections between growing domains frustrate phase separation into sparse and dense regions on the substrate. Characteristic length scales of the resulting cellular networks depend non-monotonically on the depth of quenches we use to mimic the effects of solvent evaporation. For particles with strong dipole moments, chain-like aggregates formed at early times serve as the agents of assembly at larger scales. Their effective interactions drive the formation of layered loop structures similar to those observed in experiments.

Journal ArticleDOI
TL;DR: In this paper, a comparative study was performed on nanoparticles with near-perfect crystallinity, twinning defects, or a high density of dislocations, and magnetic dipole moments were determined from magnetization curves of dilute colloidal dispersions.
Abstract: An important reason to prepare magnetic nanoparticles of uniform size and shape is to ensure uniform magnetic properties. However, here, we demonstrate that magnetic iron oxide crystals of 20 nm or less with a low polydispersity of the geometric size can nevertheless have a strikingly broad distribution of the magnetic dipole moment. A comparative study was performed on nanoparticles with near-perfect crystallinity, twinning defects, or a high density of dislocations. Size, shape, and crystal defects were characterized with electron microscopy and X-ray diffraction, and magnetic dipole moments were determined from magnetization curves of dilute colloidal dispersions. The largest divergence was found for spherical particles with 3.5% geometric size polydispersity and 35% magnetic size polydispersity due to crystal lattice defects that disrupt single-domain magnetic spin coupling. This is in stark contrast with the usual implicit assumption that uniform size and shape guarantee well-defined magnetic propert...

Journal ArticleDOI
TL;DR: The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.
Abstract: One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.

Journal ArticleDOI
TL;DR: In this article, the authors explore the action of Lorentz force in a rotating dynamo which gives rise to a strong preference for dipolar modes over quadrupolar modes, and also makes subcritical behaviour more likely to occur.
Abstract: Numerical dynamo models based on convection-driven flow in a rapidly rotating spherical shell frequently give rise to strong, stable, dipolar magnetic fields. Dipolar dynamos can be subcritical in the sense that strong magnetic fields are sustained at a Rayleigh number lower than that required for a dynamo to grow from a small seed field. In this paper we find subcritical behaviour in dynamos in line with previous studies. We explore the action of Lorentz force in a rotating dynamo which gives rise to a strong preference for dipolar modes over quadrupolar modes, and also makes subcritical behaviour more likely to occur. The coherent structures that arise in rapidly rotating convection are affected by the magnetic field in ways which strongly increase their helicity, particularly if the magnetic field is dipolar. As helicity enhances dynamo action, an existing magnetic field can hold itself up, which leads to subcritical behaviour in the dynamo. We investigate this mechanism by means of the asymptotic small Ekman number theory of rapidly rotating magnetoconvection, and compare our results with fully nonlinear dynamo simulations. There are also other mechanisms which can promote subcritical behaviour. When Reynolds stresses are significant, zonal flows can lower the helicity and disrupt the onset of dynamo action, but an established dipole field can suppress the zonal flow, and hence boost the helicity. Subcriticality means that a slow gradual reduction in Rayleigh number can lead to a catastrophic collapse of the dynamo once a critical Rayleigh number is reached. While there is little evidence that the Earth is currently in a subcritical regime, this may have implications for the long-term evolution of the geodynamo.

Journal ArticleDOI
Hiromi Iinuma1, J-Parc New g
01 May 2011
TL;DR: In this paper, a new measurement of anomalous magnetic moment of the positive muon aμ down to the level of 0.01 ppm and the electric dipole moment EDM with the improved sensitivity better than order of magnitude is proposed.
Abstract: A new measurement of anomalous magnetic moment of the positive muon aμ down to the level of 0.01 ppm and the electric dipole moment EDM with the improved sensitivity better than order of magnitude is proposed. Novel techniques utilizing an ultra-cold muon beam accelerated to 300 MeV/c and a 66 cm diameter of super-precisely controlled magnetic storage ring are introduced. An unique beam injection and storage scheme to control the beam trajectory into such a compact storage ring are also discussed.

Journal ArticleDOI
TL;DR: The results presented in this work show that the near-field thermal spectrum can be engineered via dielectric-based metamaterials, which is crucial in many emerging technologies, such as in nanoscale-gap thermophotovoltaic power generation.
Abstract: Near-field radiative heat transfer between isotropic, dielectric-based metamaterials is analyzed. A potassium bromide host medium comprised of silicon carbide (SiC) spheres with a volume filling fraction of 0.4 is considered for the metamaterial. The relative electric permittivity and relative magnetic permeability of the metamaterial are modeled via the Clausius-Mossotti relations linking the macroscopic response of the medium with the polarizabilities of the spheres. We show for the first time that electric and magnetic surface polariton (SP) mediated near-field radiative heat transfer occurs between dielectric-based structures. Magnetic SPs, existing in TE polarization, are physically due to strong magnetic dipole resonances of the spheres. We find that spherical inclusions with radii of 1 μm (or greater) are needed in order to induce SPs in TE polarization. On the other hand, electric SPs existing in TM polarization are generated by surface modes of the spheres, and are thus almost insensitive to the size of the inclusions. We estimate that the total heat flux around SP resonance for the metamaterial comprised of SiC spheres with radii of 1 μm is about 35% greater than the flux predicted between two bulks of SiC, where only surface phonon-polaritons in TM polarization are excited. The results presented in this work show that the near-field thermal spectrum can be engineered via dielectric-based metamaterials, which is crucial in many emerging technologies, such as in nanoscale-gap thermophotovoltaic power generation.

01 Sep 2011
TL;DR: In this article, the authors examined the structure of the magnetosphere using a 3D isothermal magnetohydrodynamic model that includes a static dead zone near the magnetic equator containing gas confined by the magnetic field, a wind zone outside the magnetic axis in which thermal pressure gradients and the magneto-centrifugal-tidal effect give rise to a transonic outflow, and a region near the poles where sufficiently strong tidal forces may suppress transonic flow.
Abstract: The upper atmospheres of close-in gas giant exoplanets (hot Jupiters) are subjected to intense heating and tidal forces from their parent stars. The atomic (H) and ionized (H+) hydrogen layers are sufficiently rarefied that magnetic pressure may dominate gas pressure for expected planetary magnetic field strength. We examine the structure of the magnetosphere using a 3D isothermal magnetohydrodynamic model that includes a static dead zone near the magnetic equator containing gas confined by the magnetic field, a wind zone outside the magnetic equator in which thermal pressure gradients and the magneto-centrifugal-tidal effect give rise to a transonic outflow, and a region near the poles where sufficiently strong tidal forces may suppress transonic outflow. Using dipole field geometry, we estimate the size of the dead zone to be several to tens of planetary radii for a range of parameters. Tides decrease the size of the dead zone, while allowing the gas density to increase outward where the effective gravity is outward. In the wind zone, the rapid decrease of density beyond the sonic point leads to smaller densities relative to the neighboring dead zone, which is in hydrostatic equilibrium. To understand the appropriate base conditions for the 3D isothermal model, we compute a simple 1D thermal model in which photoelectric heating from the stellar Lyman continuum is balanced by collisionally excited Lyα cooling. This 1D model exhibits a H layer with temperature T 5000-10,000 K down to a pressure P ~ 10-100 nbar. Using the 3D isothermal model, we compute maps of the H column density as well as the Lyα transmission spectra for parameters appropriate for HD 209458b. Line-integrated transit depths 5%-10% can be achieved for the above base conditions, in agreement with the results of Koskinen et al. A deep, warm H layer results in a higher mass-loss rate relative to that for a more shallow layer, roughly in proportion to the base pressure. Strong magnetic fields have the effect of increasing the transit signal while decreasing the mass loss, due to higher covering fraction and density of the dead zone. Absorption due to bulk fluid velocity is negligible at linewidths 100 km s-1 from line center. In our model, most of the transit signal arises from magnetically confined gas, some of which may be outside the L1 equipotential. Hence, the presence of gas outside the L1 equipotential does not directly imply mass loss. We verify a posteriori that particle mean free paths and ion-neutral drift are small in the region of interest in the atmosphere, and that flux freezing is a good approximation. We suggest that resonant scattering of Lyα by the magnetosphere may be observable due to the Doppler shift from the planet's orbital motion, and may provide a complementary probe of the magnetosphere. Lastly, we discuss the domain of applicability for the magnetic wind model described in this paper as well as the Roche-lobe overflow model.

Journal ArticleDOI
TL;DR: In this article, an effective low-energy theory for metallic (armchair and nonarmchair) single-wall nanotubes was derived, taking into account spin-orbit interactions and screening effects on the basis of a microscopic tight-binding model.
Abstract: We derive an effective low-energy theory for metallic (armchair and nonarmchair) single-wall nanotubes in the presence of an electric field perpendicular to the nanotube axis, and in the presence of magnetic fields, taking into account spin-orbit interactions and screening effects on the basis of a microscopic tight-binding model. The interplay between electric field and spin-orbit interaction allows us to tune armchair nanotubes into a helical conductor in both Dirac valleys. Metallic nonarmchair nanotubes are gapped by the surface curvature, yet helical conduction modes can be restored in one of the valleys by a magnetic field along the nanotube axis. Furthermore, we discuss electric dipole spin resonance in carbon nanotubes, and find that the Rabi frequency shows a pronounced dependence on the momentum along the nanotube.

Journal ArticleDOI
TL;DR: In this article, the authors constructed a numerical model of the T Tauri star V2129 Oph incorporating this result and simulate accretion on to the star using a three-dimensional magnetohydrodynamic code.
Abstract: The magnetic field of the classical T Tauri star V2129 Oph can be modelled approximately by superposing slightly tilted dipole and octupole moments, with polar magnetic field strengths of 0.35 and 1.2 kG, respectively, as observed by Donati et al. Here we construct a numerical model of V2129 Oph incorporating this result and simulate accretion on to the star using a three-dimensional magnetohydrodynamic code. Simulations show that the disc is truncated by the dipole component and matter flows towards the star in two funnel streams. Closer to the star, the flow is redirected by the octupolar component, with some of the matter flowing towards the high-latitude poles, and the rest into the octupolar belts. The shape and position of the spots differ from those in a pure dipole case, where crescent-shaped spots are observed at the intermediate latitudes. Simulations show that if the disc is truncated at the distance of r≈ 6.2R★ which is comparable with the corotation radius, rcor≈ 6.8 R★, then the high-latitude polar spot dominates, but the accretion rate obtained from the simulations (and from the accompanying theoretical calculations) is about an order of magnitude lower than the observed one. The accretion rate matches the observed one if the disc is disrupted much closer to the star, at 3.4R★. However, in that case the octupolar belt spots strongly dominate. In the intermediate case of r≈ 4.3R★, the polar spots are sufficiently bright, and the accretion rate is within the error bar of the observed accretion rate, and this model can explain the observations. However, an even better match has been obtained in experiments with a dipole field twice as strong compared with one suggested by Donati et al. The torque on the star from the disc–magnetosphere interaction is small, and the time-scale of spin evolution, 2 × 107–6 × 108 yr is longer than the 2 × 106 yr age of V2129 Oph. This means that V2129 Oph probably lost most of its angular momentum in the early stages of its evolution, possibly, during the stage when it was fully convective, and had a stronger magnetic field. The propeller mechanism could also be responsible for the rapid spin-down. The external magnetic flux of the star is strongly influenced by the disc: the field lines connecting the disc and the star inflate and form magnetic towers above and below the disc. The potential (vacuum) approximation is still valid inside the Alfven (magnetospheric) surface where the magnetic stress dominates over the matter stress.