scispace - formally typeset
Search or ask a question

Showing papers on "Multi-user MIMO published in 2016"


Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations


Book
17 Nov 2016
TL;DR: This is the first complete guide to the physical and engineering principles of Massive MIMO and will guide readers through key topics in multi-cell systems such as propagation modeling, multiplexing and de-multiplexing, channel estimation, power control, and performance evaluation.
Abstract: "Written by the pioneers of the concept, this is the first complete guide to the physical and engineering principles of Massive MIMO. Assuming only a basic background in communications and statisti ...

1,115 citations


Journal ArticleDOI
TL;DR: In this paper, a new design of precoding and detection matrices for MIMO-NOMA is proposed and its performance is analyzed for the case with a fixed set of power allocation coefficients.
Abstract: This paper considers the application of multiple-input multiple-output (MIMO) techniques to nonorthogonal multiple access (NOMA) systems. A new design of precoding and detection matrices for MIMO-NOMA is proposed and its performance is analyzed for the case with a fixed set of power allocation coefficients. To further improve the performance gap between MIMO–NOMA and conventional orthogonal multiple access schemes, user pairing is applied to NOMA and its impact on the system performance is characterized. More sophisticated choices of power allocation coefficients are also proposed to meet various quality-of-service requirements. Finally, computer simulation results are provided to facilitate the performance evaluation of MIMO–NOMA and also demonstrate the accuracy of the developed analytical results.

629 citations


Journal ArticleDOI
TL;DR: Light is shed on the potential and implementation of IM techniques for MIMO and multi-carrier communications systems, which are expected to be two of the key technologies for 5G systems.
Abstract: The ambitious goals set for 5G wireless networks, which are expected to be introduced around 2020, require dramatic changes in the design of different layers for next generation communications systems. Massive MIMO systems, filter bank multi-carrier modulation, relaying technologies, and millimeter-wave communications have been considered as some of the strong candidates for the physical layer design of 5G networks. In this article, we shed light on the potential and implementation of IM techniques for MIMO and multi-carrier communications systems, which are expected to be two of the key technologies for 5G systems. Specifically, we focus on two promising applications of IM: spatial modulation and orthogonal frequency-division multiplexing with IM, and discuss the recent advances and future research directions in IM technologies toward spectrum- and energy-efficient 5G wireless networks.

561 citations


Journal ArticleDOI
TL;DR: The potential benefits and challenges of the 5G wireless heterogeneous network (HetNet) that incorporates massive MIMO and mmWave technologies are discussed.
Abstract: There has been active research worldwide to develop the next-generation, i.e., fifth-generation (5G), wireless network. The 5G network is expected to support a significantly large amount of mobile data traffic and a huge number of wireless connections and achieve better costand energy-efficiency as well as quality of service (QoS) in terms of communication delay, reliability, and security. To this end, the 5G wireless network should exploit the potential of new developments, including superdense and heterogeneous deployment of cells and massive antenna arrays [i.e., massive multiple-input, multiple-output (MIMO) technologies] and utilization of higher frequencies, particularly millimeter-wave (mmWave) frequencies. This article discusses the potential benefits and challenges of the 5G wireless heterogeneous network (HetNet) that incorporates massive MIMO and mmWave technologies.

372 citations


Journal ArticleDOI
TL;DR: Rate-splitting relies on the transmission of common and private messages, and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability, and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions.
Abstract: MIMO processing plays a central part in the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck toward enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate CSIT. This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this article, we depart from this conventional approach and introduce readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages, and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability, and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, the impact on standard specifications, and operational challenges are also discussed.

334 citations


Journal ArticleDOI
TL;DR: This paper considers the downlink communication of a massive multiuser MIMO (MU-MIMO) system and proposes a low-complexity hybrid block diagonalization (Hy-BD) scheme to approach the capacity performance of the traditional BD processing method.
Abstract: For a massive multiple-input multiple-output (MIMO) system, restricting the number of RF chains to far less than the number of antenna elements can significantly reduce the implementation cost compared to the full complexity RF chain configuration In this paper, we consider the downlink communication of a massive multiuser MIMO (MU-MIMO) system and propose a low-complexity hybrid block diagonalization (Hy-BD) scheme to approach the capacity performance of the traditional BD processing method We aim to harvest the large array gain through the phase-only RF precoding and combining and then digital BD processing is performed on the equivalent baseband channel The proposed Hy-BD scheme is examined in both the large Rayleigh fading channels and millimeter wave (mmWave) channels A performance analysis is further conducted for single-path channels and large number of transmit and receive antennas Finally, simulation results demonstrate that our Hy-BD scheme, with a lower implementation and computational complexity, achieves a capacity performance that is close to (sometimes even higher than) that of the traditional high-dimensional BD processing

305 citations


Journal ArticleDOI
TL;DR: A joint design of the communication transmit covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves even further EIP reduction.
Abstract: Spectrum sharing enables radar and communication systems to share the spectrum efficiently by minimizing mutual interference. Recently proposed multiple-input multiple-output radars based on sparse sensing and matrix completion (MIMO-MC), in addition to reducing communication bandwidth and power as compared with MIMO radars, offer a significant advantage for spectrum sharing. The advantage stems from the way the sampling scheme at the radar receivers modulates the interference channel from the communication system transmitters, rendering it symbol dependent and reducing its row space. This makes it easier for the communication system to design its waveforms in an adaptive fashion so that it minimizes the interference to the radar subject to meeting rate and power constraints. Two methods are proposed. First, based on the knowledge of the radar sampling scheme, the communication system transmit covariance matrix is designed to minimize the effective interference power (EIP) at the radar receiver, while maintaining certain average capacity and transmit power for the communication system. Second, a joint design of the communication transmit covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves even further EIP reduction.

295 citations


Journal ArticleDOI
TL;DR: A new lens antenna array enabled mmWave multiple-input multiple-output (MIMO) communication system is studied and it is shown that the proposed design achieves significant throughput gains as well as complexity and cost reductions, thus leading to a promising new paradigm for mmWave MIMO communications.
Abstract: Millimeter wave (mmWave) communication is a promising technology for future wireless systems, while one practical challenge is to achieve its large-antenna gains with only limited radio frequency (RF) chains for cost-effective implementation. To this end, we study in this paper a new lens antenna array enabled mmWave multiple-input multiple-output (MIMO) communication system. We first show that the array response of lens antenna arrays follows a “sinc” function, where the antenna element with the peak response is determined by the angle of arrival (AoA)/departure (AoD) of the received/transmitted signal. By exploiting this unique property along with the multi-path sparsity of mmWave channels, we propose a novel low-cost and capacity-achieving spatial multiplexing scheme for both narrow-band and wide-band mmWave communications, termed path division multiplexing (PDM) , where parallel data streams are transmitted over different propagation paths with simple per-path processing. We further propose a simple path grouping technique with group-based small-scale MIMO processing to effectively mitigate the inter-stream interference due to similar AoAs/AoDs. Numerical results are provided to compare the performance of the proposed mmWave lens MIMO against the conventional MIMO with uniform planar arrays (UPAs) and hybrid analog/digital processing. It is shown that the proposed design achieves significant throughput gains as well as complexity and cost reductions, thus leading to a promising new paradigm for mmWave MIMO communications.

280 citations


Journal ArticleDOI
TL;DR: A symmetric physical layer design with OFDM is proposed for all link types, including uplink, downlink, device-to-device, and backhaul, and a scalable OFDM waveform is proposed to handle the wide range of carrier frequencies and deployments.
Abstract: The standardization of the next generation 5G radio access technology has just started in 3GPP with the ambition of making it commercially available by 2020. There are a number of features that are unique for 5G radio access compared to the previous generations such as a wide range of carrier frequencies and deployment options, diverse use cases with very different user requirements, small-size base stations, self-backhaul, massive MIMO, and large channel bandwidths. In this article, we propose a flexible physical layer for the NR to meet the 5G requirements. A symmetric physical layer design with OFDM is proposed for all link types, including uplink, downlink, device-to-device, and backhaul. A scalable OFDM waveform is proposed to handle the wide range of carrier frequencies and deployments.

267 citations


Journal ArticleDOI
TL;DR: A general overview of the current low-rank channel estimation approaches is provided, including their basic assumptions, key results, as well as pros and cons on addressing the aforementioned tricky challenges.
Abstract: Massive multiple-input multiple-output is a promising physical layer technology for 5G wireless communications due to its capability of high spectrum and energy efficiency, high spatial resolution, and simple transceiver design. To embrace its potential gains, the acquisition of channel state information is crucial, which unfortunately faces a number of challenges, such as the uplink pilot contamination, the overhead of downlink training and feedback, and the computational complexity. In order to reduce the effective channel dimensions, researchers have been investigating the low-rank (sparse) properties of channel environments from different viewpoints. This paper then provides a general overview of the current low-rank channel estimation approaches, including their basic assumptions, key results, as well as pros and cons on addressing the aforementioned tricky challenges. Comparisons among all these methods are provided for better understanding and some future research prospects for these low-rank approaches are also forecasted.

Journal ArticleDOI
TL;DR: In this article, the uplink performance of a quantized massive MIMO system that deploys orthogonal frequency division multiplexing (OFDM) for wideband communication is investigated.
Abstract: Coarse quantization at the base station (BS) of a massive multi-user (MU) multiple-input multiple-output (MIMO) wireless system promises significant power and cost savings. Coarse quantization also enables significant reductions of the raw analog-to-digital converter data that must be transferred from a spatially separated antenna array to the baseband processing unit. The theoretical limits as well as practical transceiver algorithms for such quantized MU-MIMO systems operating over frequency-flat, narrowband channels have been studied extensively. However, the practically relevant scenario where such communication systems operate over frequency-selective, wideband channels is less well understood. This paper investigates the uplink performance of a quantized massive MU-MIMO system that deploys orthogonal frequency-division multiplexing (OFDM) for wideband communication. We propose new algorithms for quantized maximum a posteriori channel estimation and data detection, and we study the associated performance/quantization tradeoffs. Our results demonstrate that coarse quantization (e.g., four to six bits, depending on the ratio between the number of BS antennas and the number of users) in massive MU-MIMO-OFDM systems entails virtually no performance loss compared with the infinite-precision case at no additional cost in terms of baseband processing complexity.

Journal ArticleDOI
TL;DR: The optimal user-cell association problem for massive MIMO heterogeneous networks is considered and, under certain conditions, the globally optimal solution is close to Nash equilibria.
Abstract: Massive MIMO is one of the most promising approaches for coping with the predicted wireless data traffic explosion. Future deployment scenarios will involve dense heterogeneous networks, comprised of massive MIMO base stations with different powers, numbers of antennas and multiplexing gain capabilities, and possibly highly nonhomogeneous user density (hot-spots). In such dense irregularly deployed networks, it will be important to have mechanisms for associating users to base stations so that the available wireless infrastructure is efficiently used. In this paper, we consider the optimal user-cell association problem for massive MIMO heterogeneous networks and illustrate how massive MIMO can also provide nontrivial advantages at the system level. Unlike previous treatments that rely on integer program problem formulations and their convex relaxations, the user-cell association problem is formulated directly as a convex network utility maximization and solved efficiently by a centralized subgradient algorithm. As we show, the globally optimal solution is physically realizable , in that there exists a sequence of integer-valued associations approaching arbitrarily closely the optimal fractional association. We also consider simple decentralized user-centric association schemes, where each user individually and selfishly connects to the base station with the highest promised throughput. Such user-centric schemes where users make local association decisions in a probabilistic manner can be viewed as games and are known to converge to Nash equilibria. Surprisingly, as we show, under certain conditions, the globally optimal solution is close to these Nash equilibria. Such decentralized approaches are, therefore, attractive not only for their simplicity, but also because they operate near the system social optimum. Our theoretical results are confirmed by extensive simulations with realistic LTE-like network parameters.

Journal ArticleDOI
01 Mar 2016
TL;DR: The paper discusses both RF frequencies below 10 GHz, where fully digital techniques are preferred, and operation at millimeter (mm)-wave bands where a combination of digital and analog techniques are needed to keep cost and power low.
Abstract: Large arrays of radios have been exploited for beamforming and null steering in both radar and communication applications, but cost and form factor limitations have precluded their use in commercial systems. This paper discusses how to build arrays that enable multiuser massive multiple-input–multiple-output (MIMO) and aggressive spatial multiplexing with many users sharing the same spectrum. The focus of the paper is the energy- and cost-efficient realization of these arrays in order to enable new applications. Distributed algorithms for beamforming are proposed, and the optimum array size is considered as a function of the performance of the receiver, transmitter, frequency synthesizer, and signal distribution within the array. The effects of errors such as phase noise and synchronization skew across the array are analyzed. The paper discusses both RF frequencies below 10 GHz, where fully digital techniques are preferred, and operation at millimeter (mm)-wave bands where a combination of digital and analog techniques are needed to keep cost and power low.

Journal ArticleDOI
TL;DR: This paper focuses on antenna calibration for massive MIMO systems with maximal ratio transmit (MRT) precoding to solve the channel nonreciprocity problem and proposes a new calibration method, called mutual coupling calibration, by using the effect of mutual coupling between adjacent antennas.
Abstract: Massive multiple-input multiple-output (MIMO) is a promising technique to greatly increase the spectral efficiency and may be adopted by the next generation mobile communication systems. Base stations (BSs) equipped with large-scale antennas can serve multiple users simultaneously by exploiting the downlink precoding in time division duplex (TDD) mode. However, channel state information (CSI) of uplink transmissions cannot be simply used for downlink precoding, because the gain mismatches of the transceiver radio frequency (RF) circuits disable the channel reciprocity. In this paper, we focus on antenna calibration for massive MIMO systems with maximal ratio transmit (MRT) precoding to solve the channel nonreciprocity problem. A new calibration method, called mutual coupling calibration, is proposed by using the effect of mutual coupling between adjacent antennas. By exploiting this method, the BS can perform the calibration without extra hardware circuit and users’ involvement. We also build up the model of calibration error and derive the closed-form expressions of the ergodic sum-rates for evaluating the impact of calibration error on system performance. Simulation results verify the high calibration accuracy of the proposed method and show the significant improvement of system performance by performing antenna calibration.

Proceedings ArticleDOI
22 Aug 2016
TL;DR: R2-F2 is introduced, a system that enables LTE base stations to infer the downlink channels to a client by observing the uplink channels from that client and extends the concept of reciprocity to LTE cellular networks, where downlink and uplink transmissions occur on different frequency bands.
Abstract: This paper focuses on a simple, yet fundamental question: ``Can a node infer the wireless channels on one frequency band by observing the channels on a different frequency band?'' This question arises in cellular networks, where the uplink and the downlink operate on different frequencies. Addressing this question is critical for the deployment of key 5G solutions such as massive MIMO, multi-user MIMO, and distributed MIMO, which require channel state information. We introduce R2-F2, a system that enables LTE base stations to infer the downlink channels to a client by observing the uplink channels from that client. By doing so, R2-F2 extends the concept of reciprocity to LTE cellular networks, where downlink and uplink transmissions occur on different frequency bands. It also removes a major hurdle for the deployment of 5G MIMO solutions. We have implemented R2-F2 in software radios and integrated it within the LTE OFDM physical layer. Our results show that the channels computed by R2-F2 deliver accurate MIMO beamforming (to within 0.7~dB of beamforming gains with ground truth channels) while eliminating channel feedback overhead.

Journal ArticleDOI
TL;DR: It is shown that as the link reliability requirement increases, more BSs and more tiers should be deactivated, and efficient algorithms to find the optimal BS densities are developed to achieve the maximum ASE while guaranteeing a certain link reliability.
Abstract: We derive a general and closed-form result for the success probability in downlink multiple-antenna (MIMO) heterogeneous cellular networks (HetNets), utilizing a novel Toeplitz matrix representation. This main result, which is equivalently the signal-to-interference ratio (SIR) distribution, includes multiuser MIMO, single-user MIMO and per-tier biasing for $K$ different tiers of randomly placed base stations (BSs), assuming zero-forcing precoding and perfect channel state information. The large SIR limit of this result admits a simple closed form that is accurate at moderate SIRs, e.g., above 5 dB. These results reveal that the SIR-invariance property of SISO HetNets does not hold for MIMO HetNets; instead the success probability may decrease as the network density increases. We prove that the maximum success probability is achieved by activating only one tier of BSs, while the maximum area spectral efficiency (ASE) is achieved by activating all the BSs. This reveals a unique tradeoff between the ASE and link reliability in multiuser MIMO HetNets. To achieve the maximum ASE while guaranteeing a certain link reliability, we develop efficient algorithms to find the optimal BS densities. It is shown that as the link reliability requirement increases, more BSs and more tiers should be deactivated.

Journal ArticleDOI
TL;DR: Under a point-to-point MIMO WET setup, a general design framework for a new type of channel learning method based on the ER's energy measurement feedback is proposed and two specific feedback schemes based on energy quantization and energy comparison are proposed.
Abstract: The multi-antenna or multiple-input multiple-output (MIMO) technique can significantly improve the efficiency of radio frequency (RF) signal enabled wireless energy transfer (WET). To fully exploit the energy beamforming gain at the energy transmitter (ET), the knowledge of channel state information (CSI) is essential, which, however, is difficult to be obtained in practice due to the energy and hardware limitation of the energy receiver (ER). To overcome this difficulty, under a point-to-point MIMO WET setup, this paper proposes a general design framework for a new type of channel learning method based on the ER’s energy measurement feedback. Specifically, the ER measures and encodes the harvested energy levels over different training intervals into bits and sends them to the ET via a feedback link of limited rate. Based on the energy-level feedback, the ET adjusts transmit beamforming in subsequent training intervals and obtains refined estimates of the MIMO channel by leveraging the technique of analytic center cutting plane method (ACCPM) in convex optimization. Under this general design framework, we further propose two specific feedback schemes based on energy quantization and energy comparison, where the feedback bits at each interval are generated at the ER by quantizing the measured energy level at the current interval and comparing it with those in previous intervals, respectively. Numerical results are provided to compare the performance of the two feedback schemes. It is shown that energy quantization performs better when the number of feedback bits per interval is large, while energy comparison is more effective vice versa.

Journal ArticleDOI
TL;DR: The aim of this work is to provide a comprehensive state-of-the-art survey on algorithms proposed for the new and challenging signal identification problems specific to MIMO systems, including space-time block code (STBC) identification, MIMo modulation identification, and detection of the number of transmit antennas.
Abstract: Signal identification is an umbrella term for signal processing techniques designed for the identification of the transmission parameters of unknown or partially known communication signals. Initially, a key technology for military applications such as signal interception, radio surveillance and electronic warfare, signal identification techniques recently found applications in commercial wireless communications as an enabling technology for cognitive receivers. With the advance and rapid adoption of multiple-input multiple-output (MIMO) communication systems in the last decade, extension of signal identification methods to include this transmission paradigm has become a priority and focus of intensive research efforts. The aim of this work is to provide a comprehensive state-of-the-art survey on algorithms proposed for the new and challenging signal identification problems specific to MIMO systems, including space-time block code (STBC) identification, MIMO modulation identification, and detection of the number of transmit antennas. Finally, concluding remarks on MIMO signal identification are provided along with an outline of the open problems and future research directions.

Journal ArticleDOI
TL;DR: This article compares channel characteristics of four latest massive MIMO channel models, such as receiver spatial correlation functions and channel capacities, and provides an overview of the latest developments in massive MimO channel measurements and models.
Abstract: The emerging fifth generation (5G) wireless communication system raises new requirements on spectral efficiency and energy efficiency. A massive multiple-input multiple-output (MIMO) system, equipped with tens or even hundreds of antennas, is capable of providing significant improvements to spectral efficiency, energy efficiency, and robustness of the system. For the design, performance evaluation, and optimization of massive MIMO wireless communication systems, realistic channel models are indispensable. This article provides an overview of the latest developments in massive MIMO channel measurements and models. Also, we compare channel characteristics of four latest massive MIMO channel models, such as receiver spatial correlation functions and channel capacities. In addition, future challenges and research directions for massive MIMO channel measurements and modeling are identified.

Journal ArticleDOI
TL;DR: This paper designs jointly optimal linear precoders for both base stations (BSs) and users in a multiuser multi-input multi-output (MU-MIMO) multicell network and develops iterative low-complexity algorithms that only invoke one simple convex quadratic program at each iteration.
Abstract: This paper designs jointly optimal linear precoders for both base stations (BSs) and users in a multiuser multi-input multi-output (MU-MIMO) multicell network. The BSs are full-duplexing transceivers while uplink users and downlink users (DLUs) are equipped with multiple antennas. Here, the network quality-of-service (QoS) requirement is expressed in terms of the minimum throughput at the BSs and DLUs. We consider the problems of either QoS-constrained sum throughput maximization or minimum cell throughput maximization. Due to the nonconcavity of the throughput functions, the optimal solutions of these two problems remain unknown in both half-duplexing and full-duplexing networks. The first problem has a nonconcave objective and a nonconvex feasible set, whereas the second problem has a nonconcave and nonsmooth objective. To solve such challenging optimization problems, we develop iterative low-complexity algorithms that only invoke one simple convex quadratic program at each iteration. Since the objective value is proved to iteratively increase, our path-following algorithms converge at least to the local optimum of the original nonconvex problems. Due to their guaranteed convergence, simple implementation, and low complexity, the devised algorithms lend themselves to practical precoder designs for large-scale full-duplex MU-MIMO multicell networks. Numerical results demonstrate the advantages of our successive convex quadratic programming framework over existing solutions.

Journal ArticleDOI
TL;DR: A MIMO-based anti-jamming scheme that exploits MIMo interference cancellation and transmit precoding technologies to turn a jammed non-connectivity scenario into an operational network and is implemented using software-defined radios.
Abstract: Jamming attack is a serious threat to the wireless communications. Reactive jamming maximizes the attack efficiency by jamming only when the targets are communicating, which can be readily implemented using software-defined radios. In this paper, we explore the use of the multi-input multi-output (MIMO) technology to achieve jamming resilient orthogonal frequency-division multiplexing (OFDM) communication. In particular, MIMO interference cancellation treats jamming signals as noise and strategically cancels them out, while transmit precoding adjusts the signal directions to optimize the decoding performance. We first investigate the reactive jamming strategies and their impacts on the MIMO-OFDM receivers. We then present a MIMO-based anti-jamming scheme that exploits MIMO interference cancellation and transmit precoding technologies to turn a jammed non-connectivity scenario into an operational network. We implement our jamming resilient communication scheme using software-defined radios. Our testbed evaluation shows the destructive power of reactive jamming attack, and also validates the efficacy and efficiency of our defense mechanisms in the presence of numerous types of reactive jammers with different jamming signal powers.

Proceedings ArticleDOI
03 Oct 2016
TL;DR: This paper designs and implements MUSE, a lightweight user grouping algorithm, which addresses the above challenges and shows MUSE can achieve high throughput gains over existing designs.
Abstract: Multi-User MIMO, the hallmark of IEEE 802.11ac and the upcoming 802.11ax, promises significant throughput gains by supporting multiple concurrent data streams to a group of users. However, identifying the best-throughput MU-MIMO groups in commodity 802.11ac networks poses three major challenges: a) Commodity 802.11ac users do not provide full CSI feedback, which has been widely used for MU-MIMO grouping. b) Heterogeneous channel bandwidth users limit grouping opportunities. c) Limited-resource on APs cannot support computationally and memory expensive operations, required by existing algorithms. Hence, state-of-the-art designs are either not portable in 802.11ac APs, or perform poorly, as shown by our testbed experiments. In this paper, we design and implement MUSE, a lightweight user grouping algorithm, which addresses the above challenges. Our experiments with commodity 802.11ac testbeds show MUSE can achieve high throughput gains over existing designs.

Journal ArticleDOI
TL;DR: A stochastic geometry model for coverage and rate analysis is proposed for MU-MIMO mmWave cellular networks, taking into account important mmWave-specific hardware constraints for hybrid analog/digital precoders and combiners, and a blockage-dependent channel model which is sparse in angular domain.
Abstract: Large antenna arrays will be needed in future millimeter wave (mmWave) cellular networks, enabling a large number of different possible antenna architectures and multiple-input multiple-output (MIMO) techniques. It is still unclear which MIMO technique is most desirable as a function of different network parameters. This paper, therefore, compares the coverage and rate performance of hybrid beamforming enabled multiuser (MU) MIMO and single-user spatial multiplexing (SM) with single-user analog beamforming (SU-BF). A stochastic geometry model for coverage and rate analysis is proposed for MU-MIMO mmWave cellular networks, taking into account important mmWave-specific hardware constraints for hybrid analog/digital precoders and combiners, and a blockage-dependent channel model which is sparse in angular domain. The analytical results highlight the coverage, rate, and power consumption tradeoffs in multiuser mmWave networks. With perfect channel state information at the transmitter and round robin scheduling, MU-MIMO is usually a better choice than SM or SU-BF in mmWave cellular networks. This observation, however, neglects any overhead due to channel acquisition or computational complexity. Incorporating the impact of such overheads, our results can be re-interpreted so as to quantify the minimum allowable efficiency of MU-MIMO to provide higher rates than SM or SU-BF.

Journal ArticleDOI
TL;DR: This work considers a downlink massive MIMO system, where the base station simultaneously sends information and energy to information users and energy users, and proposes a joint precoder for cooperative energy transfer, for which both the centralized and distributed implementations are given.
Abstract: We consider a downlink massive MIMO system, where the base station simultaneously sends information and energy to information users and energy users, respectively. The aim is to maximize the minimum harvested energy among the energy users while meeting the rate requirements of information users. With perfect channel state information (CSI), the problem is solved by obtaining the asymptotically optimal power allocation of information users and the combination coefficients of the energy precoder. For the CSI estimation in time-division duplex systems, orthogonal pilot sequences are employed by information users during the uplink, and one common pilot sequence is shared by all energy users. It is shown that the energy-harvesting performance of such a shared pilot scheme is always better than that of the orthogonal pilot scheme. Further, exploiting the intercell interference in multicell systems, a joint precoder is proposed for cooperative energy transfer, for which both the centralized and distributed implementations are given. Results indicate that the cooperative energy transfer always outperforms the noncooperative scheme with either perfect or estimated CSI.

Journal ArticleDOI
TL;DR: It is demonstrated that important capacity gains are to be expected from applying precoding even after introducing a number of significant practical impairments, and proposed pragmatic solutions that have been developed in order to overcome these limitations.
Abstract: Multi-user multiple-input multiple-output MU-MIMO has allowed recent releases of terrestrial long-term evolution LTE standards to achieve significant improvements in terms of offered system capacity. The publication of the DVB-S2X standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding- to multibeam high throughput satellite HTS systems. This paper presents results from the European Space Agency-funded R&D activities concerning the practical issues that arise when precoding is applied over an aggressive frequency re-use HTS network. In addressing these issues, the paper also proposes pragmatic solutions that have been developed in order to overcome these limitations. Through the application of a comprehensive system simulator, it is demonstrated that important capacity gains beyond 40% are to be expected from applying precoding even after introducing a number of significant practical impairments. Copyright © 2015 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: An overview of the optional multiple-input multiple-output (MIMO) antenna scheme adopted in ATSC 3.0 to improve robustness or increase capacity via additional spatial diversity and multiplexing by sending two data streams in a single radio frequency channel is provided.
Abstract: This paper provides an overview of the optional multiple-input multiple-output (MIMO) antenna scheme adopted in ATSC 3.0 to improve robustness or increase capacity via additional spatial diversity and multiplexing by sending two data streams in a single radio frequency channel. Although it is not directly specified, it is expected in practice to use cross-polarized $2 {\times }2$ MIMO (i.e., horizontal and vertical polarization) to retain multiplexing capabilities in line-of-sight conditions. MIMO allows overcoming the channel capacity limit of single antenna wireless communications in a given channel bandwidth without any increase in the total transmission power. But in the U.S. MIMO can actually provide a larger comparative gain because it would be allowed to increase the total transmit power, by transmitting the nominal transmit power in each polarization. Hence, in addition to the MIMO gains (array, diversity, and spatial multiplexing), MIMO could exploit an additional 3 dB power gain. The MIMO scheme adopted in ATSC 3.0 re-uses the single-input single-output antenna baseline constellations, and hence it introduces the use of MIMO with non-uniform constellations.

Journal ArticleDOI
TL;DR: The detrimental impact of imperfect channel state information (CSI) on the MIMO detector/precoder is investigated, and thereby, the performance degradation caused by pilot contamination, which is the residual interference due to nonorthogonal pilot sequence usage in adjacent/cochannel systems, is quantified.
Abstract: Simultaneous wireless information and power transfer techniques for multiway massive multiple-input multiple-output (MIMO) relay networks are investigated. By using two practically viable relay receiver designs, namely 1) the power splitting receiver and 2) the time switching receiver, asymptotic signal-to-interference-plus-noise ratio (SINR) expressions are derived for an unlimited number of antennas at the relay. These asymptotic SINRs are then used to derive asymptotic symmetric sum rate expressions in closed form. Notably, these asymptotic SINRs and sum rates become independent of radio frequency-to-direct current (RF-to-DC) conversion efficiency in the limit of infinitely many relay antennas. Moreover, tight average sum rate approximations are derived in closed form for finitely many relay antennas. The fundamental tradeoff between the harvested energy and the sum rate is quantified for both relay receiver structures. Notably, the detrimental impact of imperfect channel state information (CSI) on the MIMO detector/precoder is investigated, and thereby, the performance degradation caused by pilot contamination, which is the residual interference due to nonorthogonal pilot sequence usage in adjacent/cochannel systems, is quantified. The presence of cochannel interference (CCI) can be exploited to be beneficial for energy harvesting at the relay, and consequently, the asymptotic harvested energy is an increasing function of the number of cochannel interferers. Notably, in the genie-aided perfect CSI case, the detrimental impact of CCI for signal decoding can be cancelled completely whenever the number of relay antennas grows without bound. Nevertheless, the pilot contamination severely degrades the sum rate performance even for infinitely many relay antennas.

Journal ArticleDOI
TL;DR: It is shown that a two-tier HetNet with wireless backhaul can be significantly more energy efficient than a one-tier cellular network, however, this requires the bandwidth division between radio access links and wirelessBackhaul to be optimally designed according to the load conditions.
Abstract: As future networks aim to meet the ever-increasing requirements of high-data rate applications, dense, and heterogeneous networks (HetNets) will be deployed to provide better coverage and throughput. Besides the important implications for energy consumption, the trend toward densification calls for more and more wireless links to forward a massive backhaul traffic into the core network. It is critically important to take into account the presence of a wireless backhaul for the energy-efficient design of HetNets. In this paper, we provide a general framework to analyze the energy efficiency of a two-tier MIMO heterogeneous network with wireless backhaul in the presence of both uplink and downlink transmissions. We find that under spatial multiplexing the energy efficiency of a HetNet is sensitive to the network load, and it should be taken into account when controlling the number of users served by each base station. We show that a two-tier HetNet with wireless backhaul can be significantly more energy efficient than a one-tier cellular network. However, this requires the bandwidth division between radio access links and wireless backhaul to be optimally designed according to the load conditions.

Journal ArticleDOI
TL;DR: From the information-theoretic perspective, SM achieves capacity comparable to the open-loop MIMO capacity, although a subset of transmit antennas is activated in every channel use because both the channel coefficients and the input symbols carry information in SM.
Abstract: In this paper, an emerging wireless communication concept, which is termed as spatial modulation (SM) for large-scale multiple-input–multiple-output (MIMO), is considered. The results show that from the information-theoretic perspective, SM achieves capacity comparable to the open-loop MIMO capacity, although a subset of transmit antennas is activated in every channel use because both the channel coefficients and the input symbols carry information in SM. As a result, SM compensates the loss of information capacity due to a subset of antennas being activated by modulating information in the antenna index; therefore, the total information rate remains high. In particular, an upper bound for the capacity of SM is derived in closed form, and it is shown analytically that this upper bound is almost certainly achievable in the massive MIMO regime. Moreover, it is shown that the upper bound is achievable with no channel state information at the transmitter (CSIT) but with channel distribution information (CDI) at the transmitter (CDIT). The optimum transmission strategy should adapt the channel input distribution to fading using CDI such as the $K$ factor in Rician fading or the shape parameter $m$ in Nakagami- $m$ fading.