scispace - formally typeset
Search or ask a question

Showing papers on "Overpotential published in 2012"


Journal ArticleDOI
TL;DR: Modified Cu electrodes were prepared by annealing Cu foil in air and electrochemically reducing the resulting Cu(2)O layers, which resulted in electrodes whose activities were indistinguishable from those of polycrystalline Cu and a higher level of activity than all previously reported metal electrodes evaluated under comparable conditions.
Abstract: Modified Cu electrodes were prepared by annealing Cu foil in air and electrochemically reducing the resulting Cu2O layers. The CO2 reduction activities of these electrodes exhibited a strong dependence on the initial thickness of the Cu2O layer. Thin Cu2O layers formed by annealing at 130 °C resulted in electrodes whose activities were indistinguishable from those of polycrystalline Cu. In contrast, Cu2O layers formed at 500 °C that were ≥ ∼3 μm thick resulted in electrodes that exhibited large roughness factors and required 0.5 V less overpotential than polycrystalline Cu to reduce CO2 at a higher rate than H2O. The combination of these features resulted in CO2 reduction geometric current densities >1 mA/cm2 at overpotentials <0.4 V, a higher level of activity than all previously reported metal electrodes evaluated under comparable conditions. Moreover, the activity of the modified electrodes was stable over the course of several hours, whereas a polycrystalline Cu electrode exhibited deactivation within...

1,619 citations


Journal ArticleDOI
TL;DR: Electrokinetic studies indicate that the improved catalysis is linked to dramatically increased stabilization of the CO(2)(•-) intermediate on the surfaces of the oxide-derived Au electrodes.
Abstract: Carbon dioxide reduction is an essential component of many prospective technologies for the renewable synthesis of carbon-containing fuels. Known catalysts for this reaction generally suffer from low energetic efficiency, poor product selectivity, and rapid deactivation. We show that the reduction of thick Au oxide films results in the formation of Au nanoparticles (“oxide-derived Au”) that exhibit highly selective CO2 reduction to CO in water at overpotentials as low as 140 mV and retain their activity for at least 8 h. Under identical conditions, polycrystalline Au electrodes and several other nanostructured Au electrodes prepared via alternative methods require at least 200 mV of additional overpotential to attain comparable CO2 reduction activity and rapidly lose their activity. Electrokinetic studies indicate that the improved catalysis is linked to dramatically increased stabilization of the CO2•– intermediate on the surfaces of the oxide-derived Au electrodes.

1,379 citations


Journal ArticleDOI
TL;DR: The high OER activity and simple synthesis make these Ni-based catalyst thin films useful for incorporating with semiconductor photoelectrodes for direct solar-driven water splitting or in high-surface-area electrodes for water electrolysis.
Abstract: Water oxidation is a critical step in water splitting to make hydrogen fuel. We report the solution synthesis, structural/compositional characterization, and oxygen evolution reaction (OER) electrocatalytic properties of ∼2–3 nm thick films of NiOx, CoOx, NiyCo1–yOx, Ni0.9Fe0.1Ox, IrOx, MnOx, and FeOx. The thin-film geometry enables the use of quartz crystal microgravimetry, voltammetry, and steady-state Tafel measurements to study the electrocatalytic activity and electrochemical properties of the oxides. Ni0.9Fe0.1Ox was found to be the most active water oxidation catalyst in basic media, passing 10 mA cm–2 at an overpotential of 336 mV with a Tafel slope of 30 mV dec–1 with oxygen evolution reaction (OER) activity roughly an order of magnitude higher than IrOx control films and similar to the best known OER catalysts in basic media. The high activity is attributed to the in situ formation of layered Ni0.9Fe0.1OOH oxyhydroxide species with nearly every Ni atom electrochemically active. In contrast to pr...

1,306 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity "volcano" based on this analysis, which describes the experimentally observed variations in transition-metal catalysts.
Abstract: The electrochemical reduction of CO2 into hydrocarbons and alcohols would allow renewable energy sources to be converted into fuels and chemicals. However, no electrode catalysts have been developed that can perform this transformation with a low overpotential at reasonable current densities. In this work, we compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity “volcano” based on this analysis. This analysis describes the experimentally observed variations in transition-metal catalysts, including why copper is the best-known metal electrocatalyst. The protonation of adsorbed CO is singled out as the most important step dictating the overpotential. New strategies are presented for the discovery of catalysts that can operate with a reduced overpotential.

1,168 citations


Journal ArticleDOI
TL;DR: The first synthesis of NiMo nitride nanosheets on a carbon support (NiMoNx/C) is reported, and the high HER electrocatalytic activity of the resulting NiMoNX/C catalyst with low overpotential and small Tafel slope is demonstrated.
Abstract: Hydrogen production through splitting of water has attracted great scientific interest because of its relevance to renewable energy storage and its potential for providing energy without the emission of carbon dioxide. Electrocatalytic systems for H2 generation typically incorporate noble metals such as Pt in the catalysts because of their low overpotential and fast kinetics for driving the hydrogen evolution reaction (HER). However, the high costs and limited world-wide supply of these noble metals make their application in viable commercial processes unattractive. Several non-noble metal materials, such as transition-metal chalcogenides, carbides, and complexes as well as metal alloys have been widely investigated recently, and characterized as catalysts and supports for application in the evolution of hydrogen. Nitrides of early transition-metals have been shown to have excellent catalytic activities in a variety of reactions. One of the primary interests in the applications of nitrides in these reactions was to use them in conjunction with low-cost alternative metals to replace group VIII noble metals. For example, the function of molybdenum nitride as a catalyst for hydrocarbon hydrogenolysis resembles that of platinum. The catalytic and electronic properties of transition-metal nitrides are governed by their bulk and surface structure and stoichiometry. While there is some information concerning the effect of the bulk composition on the catalytic properties of this material, there is currently little known about the effects of the surface nanostructure. Nickel and nickel–molybdenum are known electrocatalysts for hydrogen production in alkaline electrolytes, and in the bulk form they exhibited exchange current densities between 10 6 and 10 4 Acm , compared to 10 3 Acm 2 for Pt. Jaksic et al. postulated a hypo-hyper-d-electronic interactive effect between Ni and Mo that yields the synergism for the HER. Owing to their poor corrosion stability, few studies in acidic media have been reported.With the objective of exploiting the decrease in the overpotential by carrying out the HER in acidic media, we have developed a low-cost, stable, and active molybdenum-nitride-based electrocatalyst for the HER. Guided by the “volcano plot” in which the activity for the evolution of hydrogen as a function of the M H bond strength exhibits an ascending branch followed by a descending branch, peaking at Pt, we designed a material on the molecular scale combining nickel, which binds H weakly, with molybdenum, which binds H strongly. Here we report the first synthesis of NiMo nitride nanosheets on a carbon support (NiMoNx/C), and demonstrate the high HER electrocatalytic activity of the resulting NiMoNx/C catalyst with low overpotential and small Tafel slope. The NiMoNx/C catalyst was synthesized by reduction of a carbon-supported ammonium molybdate [(NH4)6Mo7O24·4H2O] and nickel nitrate (Ni(NO3)2·4H2O) mixture in a tubular oven in H2 at 400 8C, and subsequent reaction with NH3 at 700 8C. During this process, the (NH4)6Mo7O24 and Ni(NO3)2 precursors were reduced to NiMo metal particles by H2, and then they were mildly transformed to NiMoNx nanosheets by reaction with ammonia. The atomic ratio of Ni/Mo was 1/4.7 determined by energy dispersive X-ray spectroscopy (EDX) on the NiMoNx/ C sample. The transmission electron microscopy (TEM) images, as shown in Figure 1a, display NiMo particles that are mainly spherical. The high-resolution TEM image, as shown in the inset of Figure 1a, corroborated the presence of an amorphous 3 to 5 nm Ni/Mo oxide layer (see Figure S4 in the Supporting Information for resolved image), whereas NiMoNx is characterized by thin, flat, and flaky stacks composed of nanosheets with high radial-axial ratios (Figure 1b and Figure S5 in the Supporting Information for a magnified image). Figure 1c shows that some of the nanosheets lay flat on the graphite carbon (as indicated by the black arrows), and some have folded edges that show different layers of NiMoNx sheets (white arrows). The thickness of the sheets ranged from 4 to 15 nm. The average stacking number of sheets measured from Figure 1b is about [*] Dr. W.-F. Chen, Dr. K. Sasaki, Dr. J. T. Muckerman, Dr. R. R. Adzic Chemistry Department, Brookhaven National Laboratory Upton, NY 11973 (USA) E-mail: ksasaki@bnl.gov

1,135 citations


Journal ArticleDOI
TL;DR: This work has previously prepared vertically aligned nitrogendoped carbon nanotubes as ORR electrocatalysts, which are free from anode crossover and CO poisoning and show a threefold higher catalytic activity and better durability than the commercial Pt/C catalyst.
Abstract: : The cathodic oxygen reduction reaction (ORR) is an important process in fuel cells and metal air batteries.[1 3] Although Pt-based electrocatalysts have been commonly used in commercial fuel cells owing to their relatively low overpotential and high current density, they still suffer from serious intermediate tolerance, anode crossover, sluggish kinetics, and poor stability in an electrochemical environment. This, together with the high cost of Pt and its limited nature reserves, has prompted the extensive search for alternative low-cost and high-performance ORR electrocatalysts. In this context, carbon-based metal-free ORR electrocatalysts have generated a great deal of interest owing to their low-cost, high electrocatalytic activity and selectivity, and excellent durability.[4 9] Of particular interest, we have previously prepared vertically aligned nitrogendoped carbon nanotubes (VA-NCNTs) as ORR electrocatalysts, which are free from anode crossover and CO poisoning and show a threefold higher catalytic activity and better durability than the commercial Pt/C catalyst.[4]

1,120 citations


Journal ArticleDOI
05 Oct 2012-Science
TL;DR: Modification of iron tetraphenylporphyrin through the introduction of phenolic groups in all ortho and ortho′ positions of the phenyl groups considerably speeds up catalysis of this reaction by the electrogenerated iron(0) complex.
Abstract: Electrochemical conversion of carbon dioxide (CO(2)) to carbon monoxide (CO) is a potentially useful step in the desirable transformation of the greenhouse gas to fuels and commodity chemicals. We have found that modification of iron tetraphenylporphyrin through the introduction of phenolic groups in all ortho and ortho' positions of the phenyl groups considerably speeds up catalysis of this reaction by the electrogenerated iron(0) complex. The catalyst, which uses one of the most earth-abundant metals, manifests a CO faradaic yield above 90% through 50 million turnovers over 4 hours of electrolysis at low overpotential (0.465 volt), with no observed degradation. The basis for the enhanced activity appears to be the high local concentration of protons associated with the phenolic hydroxyl substituents.

985 citations


Journal ArticleDOI
TL;DR: In this article, a scalable wet chemical synthesis for a catalytically active nanostructured amorphous molybdenum sulfide material was presented, which achieved a current density of 10 mA/cm2 at ∼200 mV overpotential.
Abstract: We present a scalable wet chemical synthesis for a catalytically active nanostructured amorphous molybdenum sulfide material. The catalyst film is one of the most active nonprecious metal materials for electrochemical hydrogen evolution, drawing 10 mA/cm2 at ∼200 mV overpotential. To identify the active phase of the material, we perform X-ray photoelectron spectroscopy after testing under a variety of conditions. As deposited, the catalyst resembles amorphous MoS3, but domains resembling MoS2 in composition and chemical state are created under reaction conditions and may contribute to this material’s high electrochemical activity. The activity scales with electrochemically active surface area, suggesting that the rough, nanostructured catalyst morphology also contributes substantially to the film’s high activity. Electrochemical stability tests indicate that the catalyst remains highly active throughout prolonged operation. The overpotential required to attain a current density of 10 mA/cm2 increases by o...

947 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied the promotional effects of certain transition metal ions on the activity of amorphous MoS3 films and found that Fe, Co, and Ni ions promote the growth of the MoS-3 films, resulting a high surface area and a higher catalyst loading.
Abstract: Molybdenum sulfide materials have been shown as promising non-precious catalysts for hydrogen evolution. This paper describes the study of the promotional effects of certain transition metal ions on the activity of amorphous MoS3 films. Ternary metal sulfide films, M–MoS3 (M = Mn, Fe, Co, Ni, Cu, Zn), have been prepared by cyclic voltammetry of aqueous solutions containing MCl2 and (NH4)2[MoS4]. Whereas the Mn–, Cu–, and Zn–MoS3 films show similar or only slightly higher catalytic activity as the MoS3 film, the Fe–, Co–, and Ni–MoS3 films are significantly more active. The promotional effects of Fe, Co, and Ni ions exist under both acidic and neutral conditions, but the effects are more pronounced under neutral conditions. Up to a 12-fold increase in exchange current density and a 10-fold increase in the current density at an overpotential of 150 mV are observed at pH = 7. It is shown that Fe, Co, and Ni ions promote the growth of the MoS3 films, resulting a high surface area and a higher catalyst loading. These changes are the main contributors to the enhanced activity at pH = 0. However, at pH = 7, Fe, Co, and Ni ions appear to also increase the intrinsic activity of the MoS3 film.

821 citations


Journal ArticleDOI
TL;DR: The CoO/NCNT hybrid showed high ORR activity and stability under a highly corrosive condition of 10 M NaOH at 80 °C, demonstrating the potential of strongly coupled inorganic/nanocarbon hybrid as a novel catalyst system in oxygen depolarized cathode for chlor-alkali electrolysis.
Abstract: Electrocatalyst for oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and energy-intensive industries. The design and synthesis of highly active ORR catalysts with strong durability at low cost is extremely desirable but remains challenging. Here, we used a simple two-step method to synthesize cobalt oxide/carbon nanotube (CNT) strongly coupled hybrid as efficient ORR catalyst by directly growing nanocrystals on oxidized multiwalled CNTs. The mildly oxidized CNTs provided functional groups on the outer walls to nucleate and anchor nanocrystals, while retaining intact inner walls for highly conducting network. Cobalt oxide was in the form of CoO due to a gas-phase annealing step in NH3. The resulting CoO/nitrogen-doped CNT (NCNT) hybrid showed high ORR current density that outperformed Co3O4/graphene hybrid and commercial Pt/C catalyst at medium overpotential, mainly through a 4e reduction pathway. The metal oxide/carbon nanotube hybrid was found to be advantageous o...

723 citations


Journal ArticleDOI
TL;DR: The hydrogen evolution reaction rate on a Ni electrode modified by Ni(OH)(2) nanoclusters is about four times higher than on a bare Ni surface.
Abstract: Active in alkaline environment: The activity of nickel, silver, and copper catalysts for the electrochemical transformation of water to molecular hydrogen in alkaline solutions was enhanced by modification of the metal surfaces by Ni(OH)(2) (see picture; I = current density and η = overpotential). The hydrogen evolution reaction rate on a Ni electrode modified by Ni(OH)(2) nanoclusters is about four times higher than on a bare Ni surface.

Journal ArticleDOI
TL;DR: Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2'-bipyridine)Cu(OH)(2) and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s(-1).
Abstract: The oxidation of water to O(2) is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for this reaction, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Reported here is the first copper-based catalyst for electrolytic water oxidation. Copper-bipyridine-hydroxo complexes rapidly form in situ from simple commercially available copper salts and bipyridine at high pH. Cyclic voltammetry of these solutions at pH 11.8-13.3 shows large, irreversible currents, indicative of catalysis. The production of O(2) is demonstrated both electrochemically and with a fluorescence probe. Catalysis occurs at about 750 mV overpotential. Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2'-bipyridine)Cu(OH)(2) and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s(-1).

Journal ArticleDOI
TL;DR: A novel Mn(3)O(4)/CoSe(2) hybrid which could be a promising candidate for OER catalysts and shows good stability in 0.1 M KOH electrolyte, which is highly required to a promising OER electrocatalyst.
Abstract: The design of efficient, cheap, and abundant oxygen evolution reaction (OER) catalysts is crucial to the development of sustainable energy sources for powering fuel cells. We describe here a novel Mn3O4/CoSe2 hybrid which could be a promising candidate for such electrocatalysts. Possibly due to the synergetic chemical coupling effects between Mn3O4 and CoSe2, the constructed hybrid displayed superior OER catalytic performance relative to its parent CoSe2/DETA nanobelts. Notably, such earth-abundant cobalt (Co)-based catalyst afforded a current density of 10 mA cm–2 at a small overpotential of ∼0.45 V and a small Tafel slope down to 49 mV/decade, comparable to the best performance of the well-investigated cobalt oxides. Moreover, this Mn3O4/CoSe2 hybrid shows good stability in 0.1 M KOH electrolyte, which is highly required to a promising OER electrocatalyst.

Journal ArticleDOI
TL;DR: It is shown that catalysts are not characterized by their TOF and their overpotential (η) as separate parameters but rather that the parameters are linked together by a definite relationship.
Abstract: The search for efficient catalysts to face modern energy challenges requires evaluation and comparison through reliable methods. Catalytic current efficiencies may be the combination of many factors besides the intrinsic chemical properties of the catalyst. Defining turnover number and turnover frequency (TOF) as reflecting these intrinsic chemical properties, it is shown that catalysts are not characterized by their TOF and their overpotential (η) as separate parameters but rather that the parameters are linked together by a definite relationship. The log TOF−η relationship can often be linearized, giving rise to a Tafel law, which allows the characterization of the catalyst by the value of the TOF at zero overpotential (TOF0). Foot-of-the-wave analysis of the cyclic voltammetric catalytic responses allows the determination of the TOF, log TOF−η relationship, and TOF0, regardless of the side-phenomena that interfere at high current densities, preventing the expected catalytic current plateau from being r...

Journal ArticleDOI
TL;DR: This work performs periodic density functional theory + U calculations for the water oxidation reaction on the fully hydroxylated hematite (0001) surface and shows that moderately charged O anions give rise to smaller overpotentials.
Abstract: In photoelectrochemical cells, sunlight may be converted into chemical energy by splitting water into hydrogen and oxygen molecules. Hematite (α-Fe(2)O(3)) is a promising photoanode material for the water oxidation component of this process. Numerous research groups have attempted to improve hematite's photocatalytic efficiency despite a lack of foundational knowledge regarding its surface reaction kinetics. To elucidate detailed reaction mechanisms and energetics, we performed periodic density functional theory + U calculations for the water oxidation reaction on the fully hydroxylated hematite (0001) surface. We investigate two different concentrations of surface reactive sites. Our best model involves calculating water oxidation mechanisms on a pure (1×1) hydroxylated hematite slab (corresponding to 1/3 ML of reactive sites) with an additional overlayer of water molecules to model solvation effects. This yields an overpotential of 0.77 V, a value only slightly above the 0.5-0.6 V experimental range. To explore whether doped hematite can exhibit an even lower overpotential, we consider cation doping by substitution of Fe by Ti, Mn, Co, Ni, or Si and F anion doping by replacing O on the fully hydroxylated surface. The reaction energetics on pure or doped hematite surfaces are described using a volcano plot. The relative stabilities of holes on the active O anions are identified as the underlying cause for trends in energetics predicted for different dopants. We show that moderately charged O anions give rise to smaller overpotentials. Co- or Ni-doped hematite surfaces give the most thermodynamically favored reaction pathway (lowest minimum overpotential) among all dopants considered. Very recent measurements (Electrochim. Acta 2012, 59, 121-127) reported improved reactivity with Ni doping, further validating our predictions.

Journal ArticleDOI
TL;DR: In this paper, the authors extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet, and show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V.
Abstract: In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet, as well. Using this fact, we show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V. Specifically, we find that the (100) facet of Pt is found to bind oxygen intermediates too strongly and is not active for oxygen reduction reaction (ORR). In contrast, Au(100) is predicted to be more active than Au(111) and comparable in activity to Pt alloys. Using this activity volcano, we further predict that Au alloys that bind OH more strongly could display improved ORR activity on the (100) facet. We carry out a computational search over candidate alloys and suggest that alloying Au with early transition metals could lead to materials t...

Journal ArticleDOI
TL;DR: In this paper, a combination of electrochemical impedance spectroscopy, photoelectrochemical and electrochemical measurements were employed to determine the cause of the additional overpotential needed to initiate water oxidation compared to the fast redox shuttle.
Abstract: Atomic layer deposition (ALD) was utilized to deposit uniform thin films of hematite (α-Fe2O3) on transparent conductive substrates for photocatalytic water oxidation studies. Comparison of the oxidation of water to the oxidation of a fast redox shuttle allowed for new insight in determining the rate limiting processes of water oxidation at hematite electrodes. It was found that an additional overpotential is needed to initiate water oxidation compared to the fast redox shuttle. A combination of electrochemical impedance spectroscopy, photoelectrochemical and electrochemical measurements were employed to determine the cause of the additional overpotential. It was found that photogenerated holes initially oxidize the electrode surface under water oxidation conditions, which is attributed to the first step in water oxidation. A critical number of these surface intermediates need to be generated in order for the subsequent hole-transfer steps to proceed. At higher applied potentials, the behavior of the electrode is virtually identical while oxidizing either water or the fast redox shuttle; the slight discrepancy is attributed to a shift in potential associated with Fermi level pinning by the surface states in the absence of a redox shuttle. A water oxidation mechanism is proposed to interpret these results.

Journal ArticleDOI
TL;DR: This electrochemical sensor was further applied to determine 4-NP in real water samples, and it showed great promise for simple, sensitive, and quantitative detection of 4- NP.

Journal ArticleDOI
TL;DR: In this paper, a unique amorphous MnOx-C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis, which blocks the penetration of liquid electrolyte to the inside of MnOx, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity.
Abstract: The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnOx–C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnO x blocks the penetration of liquid electrolyte to the inside of MnOx, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnOx brings additional benefits by reducing the stress/strain of the conver sion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnOx-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date.

Journal ArticleDOI
TL;DR: The combination of first-principles theoretical analysis and experimental methods offers an understanding of manganese oxide oxygen electrocatalysis at the atomic level, achieving fundamental insight that can potentially be used to design and develop improved electrocatalysts for the ORR and the OER and other important reactions of technological interest.
Abstract: Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V and 1.0 V, a potential region between the ORR and the OER relevant conditions. Next, we perform density function theory (DFT) calculations to understand the changes in the MnOx surface as a function of potential and to elucidate reaction mechanisms that lead to high activities observed in the experiments. Using DFT, we construct surface Pourbaix and free energy diagrams of three different MnOx surfaces and identify 1/2 ML HO* covered Mn2O3 and O* covered MnO2, as the active surfaces for the ORR and the OER, respectively. Additionally, we find that the ORR occurs through an associative mechanism and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis and experimental methods offers an understanding of manganese oxide oxygen electrocatalysis at the atomic level, achieving fundamental insight that can potentially be used to design and develop improved electrocatalysts for the ORR and the OER and other important reactions of technological interest.

Journal ArticleDOI
TL;DR: In situ spectroelectrochemical techniques are demonstrated to demonstrate that the stabilization of surface-associated intermediate Mn(3+) species relative to charge disproportionation is an effective strategy to lower the overpotential for water oxidation by MnO(2).
Abstract: The development of Mn-oxide electrocatalysts for the oxidation of H(2)O to O(2) has been the subject of intensive researches not only for their importance as components of artificial photosynthetic systems, but also as O(2)-evolving centers in photosystem II. However, limited knowledge of the mechanisms underlying this oxidation reaction hampers the ability to rationally design effective catalysts. Herein, using in situ spectroelectrochemical techniques, we demonstrate that the stabilization of surface-associated intermediate Mn(3+) species relative to charge disproportionation is an effective strategy to lower the overpotential for water oxidation by MnO(2). The formation of N-Mn bonds via the coordination of amine groups of poly(allylamine hydrochloride) to the surface Mn sites of MnO(2) electrodes effectively stabilized the Mn(3+) species, resulting in an ~500-mV negative shift of the onset potential for the O(2) evolution reaction at neutral pH.

Journal ArticleDOI
TL;DR: In this article, the photocurrent and photovoltage transient behavior of α-Fe2O3 photoanodes prepared by atmospheric pressure chemical vapor deposition, under light bias, in a standard electrolyte, and one containing a sacrificial agent.
Abstract: Hematite (α-Fe2O3) is widely recognized as a promising candidate for the production of solar fuels via water splitting, but its intrinsic optoelectronic properties have limited its performance to date. In particular, the large electrochemical overpotential required to drive the water oxidation is known as a major drawback. This overpotential (0.4 – 0.6 V anodic of the flat band potential) has been attributed to poor oxygen evolution reaction (OER) catalysis and to charge trapping in surface states but is still not fully understood. In the present study, we quantitatively investigate the photocurrent and photovoltage transient behavior of α-Fe2O3 photoanodes prepared by atmospheric pressure chemical vapor deposition, under light bias, in a standard electrolyte, and one containing a sacrificial agent. The accumulation of positive charges occurring in water at low bias potential is found to be maximum when the photocurrent onsets. The transient photocurrent behavior of a standard photoanode is compared to ph...

Journal ArticleDOI
TL;DR: In this paper, a photoelectrochemical hydrogen generation performance was reported for silicon nanowires (SiNWs) fabricated via metal-catalyzed electroless etching, which is attributed to a lower kinetic overpotential due to a higher surface roughness, favorable shift in the flatband potential, and light-trapping effects of the SiNW surface.
Abstract: Herein we report that silicon nanowires (SiNWs) fabricated via metal-catalyzed electroless etching yielded a photoelectrochemical hydrogen generation performance superior to that of a planar Si, which is attributed to a lower kinetic overpotential due to a higher surface roughness, favorable shift in the flat-band potential, and light-trapping effects of the SiNW surface. The SiNW photocathode yielded a photovoltage of 0.42 V, one of the highest values ever reported for hydrogen generation on p-type Si/electrolyte interfaces.

Journal ArticleDOI
TL;DR: It is demonstrated unambiguously, through the use of ceria-metal structures with well-defined geometries and interfaces, that the near-equilibrium H(2) oxidation reaction pathway is dominated by electrocatalysis at the oxide/gas interface with minimal contributions from the oxide-metal/gas triple-phase boundaries.
Abstract: Fuel cells, and in particular solid-oxide fuel cells (SOFCs), enable high-efficiency conversion of chemical fuels into useful electrical energy and, as such, are expected to play a major role in a sustainable-energy future. A key step in the fuel-cell energy-conversion process is the electro-oxidation of the fuel at the anode. There has been increasing evidence in recent years that the presence of CeO_2-based oxides (ceria) in the anodes of SOFCs with oxygen-ion-conducting electrolytes significantly lowers the activation overpotential for hydrogen oxidation. Most of these studies, however, employ porous, composite electrode structures with ill-defined geometry and uncontrolled interfacial properties. Accordingly, the means by which electrocatalysis is enhanced has remained unclear. Here we demonstrate unambiguously, through the use of ceria–metal structures with well-defined geometries and interfaces, that the near-equilibrium H_2 oxidation reaction pathway is dominated by electrocatalysis at the oxide/gas interface with minimal contributions from the oxide/metal/gas triple-phase boundaries, even for structures with reaction-site densities approaching those of commercial SOFCs. This insight points towards ceria nanostructuring as a route to enhanced activity, rather than the traditional paradigm of metal-catalyst nanostructuring.

Journal ArticleDOI
TL;DR: In this article, the authors use microkinetic modeling to demonstrate that deviations from ideal Tafel kinetics, which assume a linear relationship between overpotential and log-current, are an inherent property of multi-step heterogeneous electrocatalytic reactions.
Abstract: We use microkinetic modeling to demonstrate that deviations from ideal Tafel kinetics, which assume a linear relationship between overpotential and log-current, are an inherent property of multi-step heterogeneous electrocatalytic reactions. We show that in general, deviations from ideal Tafel behavior can often be attributed to a simultaneous increase in the rate of the rate-limiting elementary step and a change in the number of available active sites on the electrode as overpotential is induced. Our analysis shows that in the oxygen reduction reaction (ORR) on Pt electrodes, which exhibits nonlinear Tafel behavior, changing electrode potential affects not only the rate-limiting step (the initial electron transfer to molecular oxygen), but also the concentration of surface intermediates—mainly OH and H 2 O. Based on comparison of measured and predicted changes in Tafel slope (as well as pH dependence), we show that alternative interpretations of the non-ideal Tafel behavior of ORR on Pt, such as changes in rate-limiting step or adsorbate repulsion effects, are inconsistent with the observed ORR kinetics.

Journal ArticleDOI
TL;DR: Nickel-Cobalt bimetallic hydroxide catalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction as discussed by the authors.

Journal ArticleDOI
TL;DR: In this article, the authors reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations, using principles of non-equilibrium thermodynamics, and relate the cell voltage, ionic fluxes and Faradaic charge transfer kinetics to the variational electrochemical potentials of ions and electrons.
Abstract: We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model predicts narrow reaction fronts, mosaic instabilities and voltage fluctuations at low current, consistent with recent experiments, which could not be described by existing porous electrode models.

Posted Content
TL;DR: In this paper, the authors reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations, using principles of non-equilibrium thermodynamics, and relate the cell voltage, ionic fluxes and Faradaic charge transfer kinetics to the variational electrochemical potentials of ions and electrons.
Abstract: We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model predicts narrow reaction fronts, mosaic instabilities and voltage fluctuations at low current, consistent with recent experiments, which could not be described by existing porous electrode models.

Journal ArticleDOI
TL;DR: In this article, the authors used sum frequency generation (SFG) to explore the mechanism of the enhancement of selectivity of a 1-ethyl-3methylimidazolium tetrafluoroborate (EMIM-BF4)-coated silver catalyst.
Abstract: Lowering the overpotential for the electrochemical conversion of CO2 to useful products is one of the grand challenges in the Department Of Energy report, “Catalysis for Energy”. In a previous paper, we showed that CO2 conversion occurs at low overpotential on a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4)-coated silver catalyst in an aqueous solution of EMIM-BF4. One of the surprises in the previous paper was that the selectivity to CO was better than 96% on silver, compared with ∼80% in the absence of ionic liquid. In this article, we use sum frequency generation (SFG) to explore the mechanism of the enhancement of selectivity. The study used platinum rather than silver because previous workers had found that platinum is almost inactive for CO production from CO2. The results show that EMIM-BF4 has two effects: it suppresses hydrogen formation and enhances CO2 conversion. SFG shows that there is a layer of EMIM on the platinum surface that inhibits hydrogen formation. CO2, however, can react...

Journal ArticleDOI
TL;DR: In this paper, a 5 cm2 single proton exchange membrane water electrolyzer with ruthenium and iridium-based materials was examined by various physicochemical techniques in order to understand their electrochemical behavior as anodes in the PEM electrolyzer.
Abstract: Powders of ruthenium and iridium-based materials were synthesized by the thermal decomposition process. The suitable heat treatment of the polymeric precursors allowed to recover metal oxides free from organic carbon, which can be oxidized to carbon dioxide during H2O splitting at elevated potentials. The materials were examined by various physicochemical techniques in order to understand their electrochemical behavior as anodes in a 5 cm2 single proton exchange membrane water electrolyzer. Although the presence of Ir in the electrocatalyst composition contributes undoubtedly to its stability against ruthenium dissolution and the Faradaic efficiency of the PEM electrolysis cell, its great amount increases the overpotential value. The activity of the home made RuxIr1−xO2 anodes towards the oxygen evolution reaction occurs at ca. 1.5 V at 25 °C.