scispace - formally typeset
Search or ask a question

Showing papers on "Pulse duration published in 2011"


Journal ArticleDOI
TL;DR: In this article, the damage and ablation thresholds at the surface of a dielectric material, e.g., fused silica, were investigated using short pulses ranging from 7 to 300 fs.
Abstract: We present an experimental and numerical study of the damage and ablation thresholds at the surface of a dielectric material, e.g., fused silica, using short pulses ranging from 7 to 300 fs. The relevant numerical criteria of damage and ablation thresholds are proposed consistently with experimental observations of the laser irradiated zone. These criteria are based on lattice thermal melting and electronic cohesion temperature, respectively. The importance of the three major absorption channels (multi-photon absorption, tunnel effect, and impact ionization) is investigated as a function of pulse duration (7-300 fs). Although the relative importance of the impact ionization process increases with the pulse duration, our results show that it plays a role even at short pulse duration (<50 fs). For few optical cycle pulses (7 fs), it is also shown that both damage and ablation fluence thresholds tend to coincide due to the sharp increase of the free electron density. This electron-driven ablation regime is of primary interest for thermal-free laser-matter interaction and therefore for the development of high quality micromachining processes.

232 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the difficulties in producing a long-pulse HPM for the O-type Cerenkov HPM source, and suggested that explosive emissions on surfaces of designed eletrodynamic structures restrained pulse duration and operation stability.
Abstract: Recent experimental results of three kinds of long-pulse high-power microwave (HPM) sources operating in S-, C-, and X-bands are reported. The difficulties in producing a long-pulse HPM for the O-type Cerenkov HPM source were analyzed theoretically. In S- and C-bands, single-mode relativistic backward-wave oscillators were designed to achieve long-pulse HPM outputs; in X-band, because of its shorter wavelength, an O-type Cerenkov HPM source with overmoded slow-wave systems was designed to increase power capacity. In experiments, driven by a repetitive long-pulse accelerator, both S- and C-band sources generated HPMs with power of about 2 GW and pulse duration of about 100 ns in single-shot mode, and the S-band source operated stably with output power of 1.2 GW in 20-Hz repetition mode. The X-band source generated 2 GW microwaves power with pulse duration of 80 ns in the single-shot mode and 1.2 GW microwave power with pulse duration of about 100 ns in the 20-Hz repetition mode. The experiments show good performances of the O-type Cerenkov HPM source in generating repetitive long-pulse HPMs, especially in S- and C-bands. It was suggested that explosive emissions on surfaces of designed eletrodynamic structures restrained pulse duration and operation stability.

190 citations


Journal ArticleDOI
TL;DR: It is shown that relatively simple two-parameter power or logarithmic functions are useful when equivalent pulse parameters for electroporation are sought and can be important in planning of electroporated treatments.
Abstract: Electroporation-based applications require the use of specific pulse parameters for a successful outcome. When recommended values of pulse parameters cannot be set, similar outcomes can be obtained by using equivalent pulse parameters. We determined the relations between the amplitude and duration/number of pulses resulting in the same fraction of electroporated cells. Pulse duration was varied from 150 ns to 100 ms, and the number of pulses from 1 to 128. Fura 2-AM was used to determine electroporation of cells to Ca2+. With longer pulses or higher number of pulses, lower amplitudes are needed for the same fraction of electroporated cells. The expression derived from the model of electroporation could describe the measured data on the whole interval of pulse durations. In a narrower range (0.1-100 ms), less complex, logarithmic or power functions could be used instead. The relation between amplitude and number of pulses could best be described with a power function or an exponential function. We show that relatively simple two-parameter power or logarithmic functions are useful when equivalent pulse parameters for electroporation are sought. Such mathematical relations between pulse parameters can be important in planning of electroporation-based treatments, such as electrochemotherapy and nonthermal irreversible electroporation.

178 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a toolkit to treat detailed ionization, relaxation, and scattering dynamics for an atom within a consistent theoretical framework, and showed that the x-ray scattering intensity saturates at a fluence of $~${10}^{7}$ photon/\AA{}${}^{2}$ per pulse but can be maximized by using a pulse duration much shorter than the time scales involved in the relaxation of the inner-shell vacancy states created.
Abstract: X-ray free-electron lasers (FELs) are promising tools for structural determination of macromolecules via coherent x-ray scattering. During ultrashort and ultraintense x-ray pulses with an atomic-scale wavelength, samples are subject to radiation damage and possibly become highly ionized, which may influence the quality of x-ray scattering patterns. We develop a toolkit to treat detailed ionization, relaxation, and scattering dynamics for an atom within a consistent theoretical framework. The coherent x-ray scattering problem including radiation damage is investigated as a function of x-ray FEL parameters such as pulse length, fluence, and photon energy. We find that the x-ray scattering intensity saturates at a fluence of $~$${10}^{7}$ photon/\AA{}${}^{2}$ per pulse but can be maximized by using a pulse duration much shorter than the time scales involved in the relaxation of the inner-shell vacancy states created. Under these conditions, both inner-shell electrons in a carbon atom are removed, and the resulting hollow atom gives rise to a scattering pattern with little loss of quality for a spatial resolution $g1$ \AA{}. Our numerical results predict that in order to scatter from a carbon atom 0.1 photon per x-ray pulse, within a spatial resolution of 1.7 \AA{}, a fluence of $1\ifmmode\times\else\texttimes\fi{}{10}^{7}$ photons/\AA{}${}^{2}$ per pulse is required at a pulse length of 1 fs and a photon energy of 12 keV. By using a pulse length of a few hundred attoseconds, one can suppress even secondary ionization processes in extended systems. The present results suggest that high-brightness attosecond x-ray FELs would be ideal for single-shot imaging of individual macromolecules.

169 citations


Journal ArticleDOI
Jin-Long Xu1, Xianlei Li1, Yongzhong Wu1, Xiaopeng Hao1, Jingliang He1, Kejian Yang1 
TL;DR: High-quality graphene sheets with lateral size over 20 μm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer and are the largest graphene sheets prepared by exfoliation in the liquid phase.
Abstract: High-quality graphene sheets with lateral size over 20 μm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser.

161 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a pulsed power system with 32-220-kV pulse amplitude, 0.5-12-ns pulse duration, 150-ps rise time.
Abstract: In most cases, the electric breakdown of liquids is initiated by the application of high electric field on the electrode, followed by rapid propagation and branching of plasma channels. Typically plasmas are only considered to exist through the ionization of gases and typical production of plasmas in liquids generates bubbles through heating or via cavitation and sustains the plasmas within those bubbles. The question arises: is it possible to ionize the liquid without cracking and void formation?To answer this question we used a pulsed power system with 32–220 kV pulse amplitude, 0.5–12 ns pulse duration, 150 ps rise time. The discharge cell had a point-to-plate geometry with a tip diameter of 100 µm. These parameters allowed us to observe non-equilibrium plasma generation. The measurements were performed with the help of a 4Picos ICCD camera. It was found that the discharge in liquid water forms on a picosecond time scale. The increase of emission intensity and plasma formation took 200–300 ps. The diameter of the excited region near the tip of the high-voltage electrode was ~1 mm. After this initial stage emission rapidly decreased and the plasma region became almost invisible after 500 ps. The absence of emission during the rest of the pulse is explained by a decrease of the electrical field on the boundary of the conductive zone.Thus we have demonstrated the possibility of formation of non-equilibrium plasma in the liquid phase and investigated the dynamics of excitation and quenching of non-equilibrium plasma in liquid water.

148 citations


Journal ArticleDOI
TL;DR: Extreme-ultraviolet high-order-harmonic pulses with 1.6·10(7) photons/pulse at 32.5 eV have been separated from multiple harmonic orders by a time-preserving monochromator using a single grating in the off-plane mount to give minimum temporal broadening and high efficiency.
Abstract: Extreme-ultraviolet high-order-harmonic pulses with 1.6·10(7) photons/pulse at 32.5 eV have been separated from multiple harmonic orders by a time-preserving monochromator using a single grating in the off-plane mount. This grating geometry gives minimum temporal broadening and high efficiency. The pulse duration of the monochromatized harmonic pulses has been measured to be in the range 20 to 30 fs when the harmonic process is driven by an intense 30 fs near-infrared pulse. The harmonic photon energy is tunable between 12 and 120 eV. The instrument is used in the monochromatized branch of the Artemis beamline at the Central Laser Facility (UK) for applications in ultrafast electron spectroscopy.

145 citations


Journal ArticleDOI
TL;DR: In this article, the authors predicted peak electric field strengths on the MV/cm level in the 0.3-1.5 GHz frequency range by using optimal pump pulse duration of about 500 fs, optimal crystal length, and cryogenic temperatures for reducing THz absorption in LiNbO3.
Abstract: Optical rectification of ultrashort laser pulses in LiNbO3 by tilted-pulse-front excitation is a powerful way to generate near single-cycle terahertz (THz) pulses. Calculations were carried out to optimize the output THz peak electric field strength. The results predict peak electric field strengths on the MV/cm level in the 0.3-1.5 THz frequency range by using optimal pump pulse duration of about 500 fs, optimal crystal length, and cryogenic temperatures for reducing THz absorption in LiNbO3. The THz electric field strength can be increased further to tens of MV/cm by focusing. Using optimal conditions together with the contact grating technique THz pulses with 100 MV/cm focused electric field strength and energies on the tens-of-mJ scale are feasible.

138 citations


Journal ArticleDOI
07 Jan 2011-Science
TL;DR: Analysis of the history of laser development reveals that the pulse duration and intensity of lasers (or derived coherent radiation bursts) are linearly related over more than 18 orders of magnitude, leading to the conclusion that the shortest coherent pulse should come from such a large-sized laser.
Abstract: A few years ago, a new type of large-scale laser infrastructure specifically conceived to produce the highest peak power and focused intensity was announced: the Extreme Light Infrastructure, ELI ( 1 ), designed to be the first exawatt-class (1018 W) laser. This gargantuan power will be obtained by cramming a kilojoule of energy into a pulse only 10 fs in duration. Analysis of the history of laser development reveals that the pulse duration and intensity of lasers (or derived coherent radiation bursts) are linearly related over more than 18 orders of magnitude (see the figure). This observation leads us to the conclusion that the shortest coherent pulse should come from such a large-sized laser. If zeptosecond and perhaps yoctosecond pulses can be produced using kilojoule-megajoule systems, it would open a route to time-resolved nuclear physics exploration and the possibility of peeking into the nucleus interior in the same way that chemical reactions or atoms can be probed today.

138 citations


Journal ArticleDOI
TL;DR: In this paper, a semiconductor disk laser based on an InGaAs/AlGaAs quantum-well gain medium was mode-locked by a fast semiconductor saturable absorber mirror.
Abstract: A semiconductor disk laser based on an InGaAs/AlGaAs quantum-well gain medium was mode-locked by a fast semiconductor saturable absorber mirror. By high-order harmonic mode-locking a 92 GHz pulse train was obtained with a pulse duration of <200 fs. In order to achieve fundamental mode-locking, too strong saturation of the semiconductor elements had to be avoided. In a single-pulse regime, pulses shorter than 110 fs were generated at a wavelength of 1030 nm.

135 citations


Journal ArticleDOI
TL;DR: It is demonstrated that spatial information is also encoded in the fluorophore lifetime and that this information can be used to improve the spatial resolution of STED microscopy, and time-gating in the presence of a continuous-wave STED beam produces theoretically unbounded resolution with finite laser power.
Abstract: Stimulated-emission depletion (STED) microscopy improves image resolution by encoding additional spatial information in a second stimulated-decay channel with a spatially-varying strength. Here we demonstrate that spatial information is also encoded in the fluorophore lifetime and that this information can be used to improve the spatial resolution of STED microscopy. By solving a kinetic model for emission in the presence of a time-varying STED pulse, we derive the effective resolution as a function of fluorophore lifetime and pulse duration. We find that the best resolution for a given pulse power is achieved with a pulse of infinitesimally short duration; however, the maximum resolution can be restored for pulses of finite duration by time-gating the fluorescence signal. In parallel, we consider time-gating in the presence of a continuous-wave (CW) STED beam and find that time-gating produces theoretically unbounded resolution with finite laser power. In both cases, the cost of this improved resolution is a reduction in the brightness of the final image. We conclude by discussing situations in which time-gated STED microscopy (T-STED) may provide improved microscope performance beyond an increase in resolution.

Journal ArticleDOI
TL;DR: This work develops a unified computational method for optimal pulse design using ideas from pseudospectral approximations, by which a continuous-time optimal control problem of pulse design can be discretized to a constrained optimization problem with spectral accuracy.
Abstract: Many key aspects of control of quantum systems involve manipulating a large quantum ensemble exhibiting variation in the value of parameters characterizing the system dynamics. Developing electromagnetic pulses to produce a desired evolution in the presence of such variation is a fundamental and challenging problem in this research area. We present such robust pulse designs as an optimal control problem of a continuum of bilinear systems with a common control function. We map this control problem of infinite dimension to a problem of polynomial approximation employing tools from geometric control theory. We then adopt this new notion and develop a unified computational method for optimal pulse design using ideas from pseudospectral approximations, by which a continuous-time optimal control problem of pulse design can be discretized to a constrained optimization problem with spectral accuracy. Furthermore, this is a highly flexible and efficient numerical method that requires low order of discretization and yields inherently smooth solutions. We demonstrate this method by designing effective broadband π/2 and π pulses with reduced rf energy and pulse duration, which show significant sensitivity enhancement at the edge of the spectrum over conventional pulses in 1D and 2D NMR spectroscopy experiments.

Journal ArticleDOI
TL;DR: This communication describes radiofrequency pulses capable of performing spatially periodic excitation, inversion, and refocusing that should find widespread application for multiplexed imaging and for pulse sequences that have a high radiofrequency power deposition and could lead to dramatic increases in scanning efficiency.
Abstract: This communication describes radiofrequency pulses capable of performing spatially periodic excitation, inversion, and refocusing. The generation of such pulses either by multiplication of existing radiofrequency pulses by a Dirac comb function or by means of Fourier series expansion is described. Practical schemes for the implementation of such pulses are given, and strategies for optimizing the pulse profile at fixed pulse duration are outlined. The pulses are implemented using a spin-echo sequence. The power deposition is independent of the number of slices acquired, and hence the power deposition per slice is considerably reduced compared to multislice imaging. Excellent image quality is obtained both in phantoms and in images of the human head. These pulses should find widespread application for multiplexed imaging, in particular at high static magnetic field strengths and for pulse sequences that have a high radiofrequency power deposition and could lead to dramatic increases in scanning efficiency.

Journal ArticleDOI
TL;DR: A diode-pumped, actively Q-switched 2.8 μm fiber laser oscillator with an average output power of more than 12 W has been realized through the use of a 35 μm core erbium-doped ZBLAN fiber and an acousto-optic modulator; to the authors' knowledge, this is the first 3 μm pulsed fiber laser in the 10 W class.
Abstract: A diode-pumped, actively Q-switched 2.8 μm fiber laser oscillator with an average output power of more than 12 W has been realized through the use of a 35 μm core erbium-doped ZBLAN fiber and an acousto-optic modulator; to our knowledge, this is the first 3 μm pulsed fiber laser in the 10 W class. Pulse energy up to 100 μJ and pulse duration down to 90 ns, corresponding to a peak power of 0.9 kW, were achieved at a repetition rate of 120 kHz.

Posted Content
TL;DR: The so far highest THz pulse energy and efficiency were measured by optical rectification of 1.3 ps pulses in LiNbO3 and the generation of mJ-level THz pulses is predicted by calculations.
Abstract: Optical rectification of ultrashort laser pulses in LiNbO3 by tilted-pulse-front excitation is a powerful way to generate near single-cycle terahertz (THz) pulses. Motivated by various applications, calculations were carried out to optimize the THz peak electric field strength. The results predict THz output with peak electric field strength on the MV/cm level in the 0.3-1.5 THz frequency range by using optimal pump pulse duration of about 500 fs, optimal crystal length, and cryogenic temperatures for reducing THz absorption in LiNbO3. The THz electric field strength can be increased further to tens of MV/cm by focusing. Using optimal conditions together with the contact grating technique THz pulses with 100 MV/cm field strength and energies on the tens-of-mJ scale are feasible.

Journal ArticleDOI
TL;DR: Ablation characteristics of copper and stainless steel with laser pulses from 10 to 100 ps at 1064 nm wavelength were studied in this article, where the influence of the pulse duration and the number of pulses on the threshold fluence and the penetration depth was investigated.

Journal ArticleDOI
TL;DR: In this article, the effect of the combined steady-state/pulsed plasma on polycrystalline tungsten targets was investigated and it was shown that the combination of the high flux plasma and transient heat/particle source leads to strong synergistic effects.
Abstract: A new experimental setup has been developed for edge localized mode (ELM) simulation experiments with relevant steady-state plasma conditions and transient heat/particle source. The setup is based on the Pilot-PSI linear plasma device and allows the superimposition of a transient heat/particle pulse to the steady-state heat flux plasma. Energy densities as high as 1?MJ?m?2 have been reached for a pulse duration of about 1.5?ms, and for a variety of gases (H, He, Ar). In this contribution, we report on the first experiments investigating the effect of the combined steady-state/pulsed plasma on polycrystalline tungsten targets. Under such conditions the threshold for tungsten release and surface roughening is found to be much lower than in previously reported experiments. This suggests that the combination of the high flux plasma and transient heat/particle source leads to strong synergistic effects.

Journal ArticleDOI
TL;DR: In this article, an x-ray-optical cross-correlation technique was proposed to determine the duration of femtosecond (>40?fs) x-rays from the Linac Coherent Light Source (LCLS).
Abstract: Two-color, single-shot time-of-flight electron spectroscopy of atomic neon was employed at the Linac Coherent Light Source (LCLS) to measure laser-assisted Auger decay in the x-ray regime. This x-ray-optical cross-correlation technique provides a straightforward, non-invasive and on-line means of determining the duration of femtosecond (>40?fs) x-ray pulses. In combination with a theoretical model of the process based on the soft-photon approximation, we were able to obtain the LCLS pulse duration and to extract a mean value of the temporal jitter between the optical pulses from a synchronized Ti-sapphire laser and x-ray pulses from the LCLS. We find that the experimentally determined values are systematically smaller than the length of the electron bunches. Nominal electron pulse durations of 175 and 75?fs, as provided by the LCLS control system, yield x-ray pulse shapes of 120?20?fs full-width at half-maximum (FWHM) and an upper limit of 40?20?fs FWHM, respectively. Simulations of the free-electron laser agree well with the experimental results.

Journal ArticleDOI
TL;DR: In this paper, experimental results of femtosecond laser ablation of the metals copper, silver and tungsten are compared to simulations based on the two-temperature model, and the dependence of the threshold fluence and melting depth on pulse duration is investigated.
Abstract: Experimental results of femtosecond laser ablation of the metals copper, silver and tungsten are compared to simulations based on the two-temperature model. The comparison provides new information about the laser-heating process: For the noble metals (Cu, Ag), the energy transport via ballistic electrons must be included, while this effect is negligible for a transition metal (W). The comparison provides values for the range of ballistic electrons in the noble metals. The model calculation is also employed to investigate the dependence of the threshold fluence and melting depth on pulse duration. It is observed that for pulses shorter than approximately 1 ps the threshold fluence and melting depth are independent of the pulse duration, while they increase as τ 0.47 and τ 0.51, respectively, for pulses longer than ∼40 ps, in good agreement with approximate analytical expressions predicting a $\sqrt{\tau}$ dependence.

Journal ArticleDOI
TL;DR: The VECSEL is optically pumped, based on self-assembled InAs quantum dot (QD) gain layers, cooled efficiently using a thin disk geometry and passively modelocked with a fast quantum dot semiconductor saturable absorber mirror (SESAM).
Abstract: We report on the first femtosecond vertical external cavity surface emitting laser (VECSEL) exceeding 1 W of average output power. The VECSEL is optically pumped, based on self-assembled InAs quantum dot (QD) gain layers, cooled efficiently using a thin disk geometry and passively modelocked with a fast quantum dot semiconductor saturable absorber mirror (SESAM). We developed a novel gain structure with a flat group delay dispersion (GDD) of ± 10 fs2 over a range of 30 nm around the designed operation wavelength of 960 nm. This amount of GDD is several orders of magnitude lower compared to standard designs. Furthermore, we used an optimized positioning scheme of 63 QD gain layers to broaden and flatten the spectral gain. For stable and self-starting pulse formation, we have employed a QD-SESAM with a fast absorption recovery time of around 500 fs. We have achieved 1 W of average output power with 784-fs pulse duration at a repetition rate of 5.4 GHz. The QD-SESAM and the QD-VECSEL are operated with similar cavity mode areas, which is beneficial for higher repetition rates and the integration of both elements into a modelocked integrated external-cavity surface emitting laser (MIXSEL).

Journal ArticleDOI
TL;DR: This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes, and suggests that a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of100 to 150 Hz may also provide an alternative to the Ho: YAG laser for higher ablation rates.
Abstract: The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

Journal ArticleDOI
TL;DR: Thermal conduction model is presented, by which nonlinear absorptivity of ultrashort laser pulses in internal modification of bulk glass is simulated, and shows that laser energy is absorbed by avalanche ionization seeded by thermally excited free-electrons at locations apart from the focus at pulse repetition rates higher than 100 kHz.
Abstract: Thermal conduction model is presented, by which nonlinear absorptivity of ultrashort laser pulses in internal modification of bulk glass is simulated. The simulated nonlinear absorptivity agrees with experimental values with maximum uncertainty of ± 3% in a wide range of laser parameters at 10 ps pulse duration in borosilicate glass. The nonlinear absorptivity increases with increasing energy and repetition rate of the laser pulse, reaching as high as 90%. The increase in the average absorbed laser power is accompanied by the extension of the laser-absorption region toward the laser source. Transient thermal conduction model for three-dimensional heat source shows that laser energy is absorbed by avalanche ionization seeded by thermally excited free-electrons at locations apart from the focus at pulse repetition rates higher than 100 kHz.

Journal ArticleDOI
TL;DR: In this article, a mathematical model of a lithium-ion cell was used to analyze pulse and relaxation behavior in cells designed for hybrid-electric-vehicle propulsion, and the results indicated that the ohmic voltage loss in the positive electrode is the dominant contributor to cell overvoltage in the first instances of a pulse.

Journal ArticleDOI
01 Feb 2011
TL;DR: PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation.
Abstract: An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration, and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0-325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28-340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25-175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation.

Journal ArticleDOI
TL;DR: In the quantitative results, the optimized sintering conditions of copper nanoparticles with a mean diameter of 30 nm and a fixed total irradiated pulse energy of 32 J cm(-2) were a pulse number and pulse width of > 4 and < 3 msec, respectively.
Abstract: Pulse management of white light to maximize the sintering efficiency of a rapid (msec) and substrate-protective method, intense pulsed light (IPL), was studied systematically with a printable Cu nanoink. An excessive pulse energy that induces deleterious defects on the Cu film along with damage on a plastic substrate was dissipated into multiple sub-pulses while maintaining a total energy budget over the threshold level for successful Cu sintering. Electrical properties of the metal layers were analyzed in conjunction with pulse formation factors such as average energy, pulse duration, peak power and pulse number to determine their respective effects on IPL sintering. In the quantitative results, the optimized sintering conditions of copper nanoparticles with a mean diameter of 30 nm and a fixed total irradiated pulse energy of 32 J cm − 2 were a pulse number and pulse width of > 4 and < 3 msec, respectively.

Journal ArticleDOI
TL;DR: In this article, the authors used calibrated capacitive probe measurements to study the fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide.
Abstract: Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10–40 kV, pulse duration 30–100 ns, and voltage rise time ∼1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically usi...

Journal ArticleDOI
TL;DR: In this paper, the authors consider the relatively new design of the pulsed fiber lasers, namely lasers with the fiber saturable absorber (FSA), and show that such lasers can be based on the different types of the fiber absorber and operate in different spectral ranges.
Abstract: In this brief review we consider the relatively new design of the pulsed fiber lasers, namely lasers with the fiber saturable absorber (FSA). Main advantage of this design consists in a possibility to realize a simple all-fiber scheme of Q-switched laser. We show that such lasers can be based on the different types of the fiber absorber and operate in the different spectral ranges. Up to now a set of the pulsed lasers were build. Pulse energy from several μJ to several hundred μJ was demonstrated. Pear power was changed from tens W to several kW with the pulse duration from 50 ns to 1 μs. We show that described principles of Q-switching can be applied for other types of the fiber lasers. Also, new fiber absorbers are suggested.

Journal ArticleDOI
TL;DR: In this article, the E22 electronic transition of a sample of single-walled carbon nanotubes and use it to mode-lock an erbium fiber ring laser.
Abstract: We characterize the saturable absorption of the second (E22) electronic transition of a sample of single-walled carbon nanotubes and use it to mode-lock an ytterbium fiber ring laser. The modulation depth of ~ 15% was found to be similar to the corresponding E11 transition (~ 13%), but the saturation intensity (~ 220 MW cm-2) about an order of magnitude larger (~ 10 MW cm-2). We achieved a 15 MHz mode-locked pulse train with an output pulse duration of 6.5 ps. For comparison we also demonstrate stable mode-locking on the E11 transition, of the same nanotubes, with an erbium fiber ring laser, producing 1.1 ps pulses. Using the E22 transition should enable the use of carbon nanotube saturable absorbers at shorter wavelengths than currently possible with the E11 transition, which are limited by the smallest achievable nanotube dimensions.

Journal ArticleDOI
TL;DR: In this article, the authors showed that graphene within fiber laser cavities can generate four-wave-mixing (FWM) by observing the laser spectral broadening and the transition from the single longitudinal mode oscillation to multiple-longitudinal mode one.
Abstract: We experimentally confirm that graphene within fiber laser cavities can generate four-wave-mixing (FWM) by observing the laser spectral broadening and the transition from the single-longitudinal-mode oscillation to multiple-longitudinal-mode one. Then, by simultaneously exploiting the graphene-induced nonlinear FWM and its super-broadband saturable absorption, we further achieve for the first time to the best of our knowledge, multiwavelength Q-switched Yb3+- or Er3+-doped fiber lasers at 1 μm and 1.5 μm wavebands, respectively. Simultaneous 23-wavelength Q-switching oscillation with a wavelength spacing of 0.2 nm is stably generated at 1.5 μm waveband. The multiwavelength Q-switched pulses have the minimum pulse duration of 2.5 μs, the maximum pulse energy of 72.5 nJ and a wide range of pulse-repetition-rate (PRR) from 2.8 to 63.0 kHz. At 1 μm waveband, we also obtain five-wavelength simultaneous lasing in Q-switching regime with the pulse duration of ~ 3 μs, pulse energy of 10.3 nJ and PRR between 39.8 and 56.2 kHz.

Journal ArticleDOI
TL;DR: In this article, the formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses was studied experimentally and theoretically.