scispace - formally typeset
Search or ask a question

Showing papers on "Stem-cell therapy published in 2015"


Journal ArticleDOI
TL;DR: The biogenesis of exosomes, their molecular composition, and their role as messengers of intercellular communication are reviewed, focusing on their potential as therapeutic vectors for stem cell therapy.
Abstract: Mesenchymal stem cells (MSCs), whose mechanism of action is predominantly paracrine, are being widely tested for the treatment of a variety of human diseases. No one factor has been proven sufficient to mediate the therapeutic effects of MSCs. However, exosomes--membrane vesicles secreted by many cells, including MSCs--are appealing candidates as vectors of their efficacy. Exosomes can transport and deliver a large cargo of proteins, lipids, and nucleic acids and can modify cell and organ function. In addition to their key role as vehicles of intercellular communication, exosomes are increasingly recognized as biomarkers and prognosticators of disease. Moreover, they have the potential to be used as vehicles of gene and drug delivery for clinical application. This article reviews the biogenesis of exosomes, their molecular composition, and their role as messengers of intercellular communication, focusing on their potential as therapeutic vectors for stem cell therapy.

540 citations


Journal ArticleDOI
TL;DR: Attention is paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.

526 citations


Journal ArticleDOI
TL;DR: The potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications is shown, providing new insights into the plasticity of human ADMSCs.
Abstract: Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.

385 citations


Journal ArticleDOI
TL;DR: HUCMSCs are noncontroversial sources compared to embryonic stem cells and can differentiate into the three germ layers that promote tissue repair and modulate immune responses and anticancer properties, making them attractive autologous or allogenic agents for the treatment of malignant and nonmalignant solid and soft cancers.

368 citations


Journal ArticleDOI
TL;DR: This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases.
Abstract: Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

185 citations


Journal ArticleDOI
TL;DR: Ranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches are reported and the presence of IGF increased cell survival up to 40% versus unlabeled cells under in vitro serum-free culture conditions.
Abstract: Increasing cell survival in stem cell therapy is an important challenge for the field of regenerative medicine Here, we report theranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches First, the nanoparticle offers ultrasound and MRI signal to guide implantation into the peri-infarct zone and away from the most necrotic tissue Second, the nanoparticle serves as a slow release reservoir of insulin-like growth factor (IGF)-a protein shown to increase cell survival Mesenchymal stem cells labeled with these nanoparticles had detection limits near 9000 cells with no cytotoxicity at the 250 µg/mL concentration required for labeling We also studied the degradation of the nanoparticles and showed that they clear from cells in approximately 3 weeks The presence of IGF increased cell survival up to 40% (p<005) versus unlabeled cells under in vitro serum-free culture conditions

165 citations


Journal ArticleDOI
TL;DR: This comprehensive study shows that Wharton’s Jelly is better than UCB both in terms of rapidity, yield and ease of procedure and being autologous, they are safe and probable candidates for therapeutic future applications.
Abstract: The multipotent and immunosuppressive capacities of mesenchymal stem cells (MSCs) attract several scientists worldwide towards translational research focusing on treatment of diseases including liver failure. Though MSC’s have been isolated from different sources, researchers do not concur on the best source for expansion and clinical translation. In this study, we have compared the isolation, proliferation and expansion of MSCs from umbilical cord blood (UCB), Wharton’s Jelly (WJ), bone marrow (BM) and adipose tissue (AT). MSCs were isolated by density gradient separation from UCB, BM and AT and by both enzymatic and explant method for WJ. The MSCs are characterized by their ability to adhere to plastic, expression of positive (CD105, CD73, CD90, CD29, CD44) and negative (CD45, CD14, CD34) markers by flow cytometry and also by their in vitro adipogenic, osteogenic and chondrogenic differentiation. This comprehensive study clearly shows that WJ is better than UCB both in terms of rapidity, yield and ease of procedure. AT and BM are autologous sources for MSC’s but the specimen collection involves cumbersome and painful procedures and an invasive approach. However being autologous, they are safe and probable candidates for therapeutic future applications.

161 citations


Journal ArticleDOI
06 Feb 2015-PLOS ONE
TL;DR: In this paper, β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of small hairpin RNAs (shRNAs).
Abstract: Our previous data illustrated that activation of the canonical Wnt signaling pathway was enriched in triple-negative breast cancer and associated with reduced overall survival in all patients. To determine whether Wnt signaling may be a promising therapeutic target for triple-negative breast cancer, we investigated whether β-catenin was necessary for tumorigenic behaviors in vivo and in vitro. β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of β-catenin-specific small hairpin RNAs (shRNAs). Upon implantation of the cells in the mammary fat pad of immunocompromised mice, we found that β-catenin shRNA HCC38 cells formed markedly smaller tumors than control cells and grew much more slowly. In in vitro assays, β-catenin silencing significantly reduced the percentage of Aldefluor-positive cells, a read-out of the stem-like cell population, as well as the expression of stem cell-related target genes including Bmi-1 and c-Myc. β-catenin-knockdown cells were also significantly impaired in their ability to migrate in wound-filling assays and form anchorage-independent colonies in soft agar. β-catenin-knockdown cells were more sensitive to chemotherapeutic agents doxorubicin and cisplatin. Collectively, these data suggest that β-catenin is required for triple-negative breast cancer development by controlling numerous tumor-associated properties, such as migration, stemness, anchorage-independent growth and chemosensitivity.

144 citations


Journal ArticleDOI
TL;DR: NapFF-NO hydrogel can obviously improve therapeutic efficacy of AD-MSCs for MI by increasing cell engraftment and angiogenic paracrine action.

127 citations


Journal ArticleDOI
TL;DR: It is convinced that in the future the stem cell therapy with the support of functionalized electrospun nerve scaffolds could be a promising therapy to cure nerve diseases.
Abstract: Nerve diseases including acute injury such as peripheral nerve injury (PNI), spinal cord injury (SCI) and traumatic brain injury (TBI), and chronic disease like neurodegeneration disease can cause various function disorders of nervous system, such as those relating to memory and voluntary movement. These nerve diseases produce great burden for individual families and the society, for which a lot of efforts have been made. Axonal pathways represent a unidirectional and aligned architecture allowing systematic axonal development within the tissue. Following a traumatic injury, the intricate architecture suffers disruption leading to inhibition of growth and loss of guidance. Due to limited capacity of the body to regenerate axonal pathways, it is desirable to have biomimetic approach that has the capacity to graft a bridge across the lesion while providing optimal mechanical and biochemical cues for tissue regeneration. And for central nervous system injury, one more extra precondition is compulsory: creating a less inhibitory surrounding for axonal growth. Electrospinning is a cost-effective and straightforward technique to fabricate extracellular matrix (ECM)-like nanofibrous structures, with various fibrous forms such as random fibers, aligned fibers, 3D fibrous scaffold and core-shell fibers from a variety of polymers. The diversity and versatility of electrospinning technique, together with functionalizing cues such as neurotrophins, ECM-based proteins and conductive polymers, have gained considerable success for the nerve tissue applications. We are convinced that in the future the stem cell therapy with the support of functionalized electrospun nerve scaffolds could be a promising therapy to cure nerve diseases.

124 citations


Journal ArticleDOI
TL;DR: Optimize a bioprocess to generate hMSCs or their secreted products (or both) promises to improve the efficacy as well as safety of this stem cell therapy.
Abstract: Human mesenchymal stem cells (hMSCs), also called mesenchymal stromal cells, have been of great interest in regenerative medicine applications because of not only their differentiation potential but also their ability to secrete bioactive factors that can modulate the immune system and promote tissue repair. This potential has initiated many early-phase clinical studies for the treatment of various diseases, disorders, and injuries by using either hMSCs themselves or their secreted products. Currently, hMSCs for clinical use are generated through conventional static adherent cultures in the presence of fetal bovine serum or human-sourced supplements. However, these methods suffer from variable culture conditions (i.e., ill-defined medium components and heterogeneous culture environment) and thus are not ideal procedures to meet the expected future demand of quality-assured hMSCs for human therapeutic use. Optimizing a bioprocess to generate hMSCs or their secreted products (or both) promises to improve the efficacy as well as safety of this stem cell therapy. In this review, current media and methods for hMSC culture are outlined and bioprocess development strategies discussed.

Journal ArticleDOI
TL;DR: Results show that BM‐MSCs' therapeutic effect on healing of injured corneal surface is comparable to that of tissue‐specific LSCs, and suggest that BM-MSCs can be used for ocular surface regeneration in cases when autologous L SCs are absent or difficult to obtain.
Abstract: UNLABELLED Stem cell-based therapy has become an attractive and promising approach for the treatment of severe injuries or thus-far incurable diseases. However, the use of stem cells is often limited by a shortage of available tissue-specific stem cells; therefore, other sources of stem cells are being investigated and tested. In this respect, mesenchymal stromal/stem cells (MSCs) have proven to be a promising stem cell type. In the present study, we prepared MSCs from bone marrow (BM-MSCs) or adipose tissue (Ad-MSCs) as well as limbal epithelial stem cells (LSCs), and their growth, differentiation, and secretory properties were compared. The cells were grown on nanofiber scaffolds and transferred onto the alkali-injured eye in a rabbit model, and their therapeutic potential was characterized. We found that BM-MSCs and tissue-specific LSCs had similar therapeutic effects. Clinical characterization of the healing process, as well as the evaluation of corneal thickness, re-epithelialization, neovascularization, and the suppression of a local inflammatory reaction, were comparable in the BM-MSC- and LSC-treated eyes, but results were significantly better than in injured, untreated eyes or in eyes treated with a nanofiber scaffold alone or with a nanofiber scaffold seeded with Ad-MSCs. Taken together, the results show that BM-MSCs' therapeutic effect on healing of injured corneal surface is comparable to that of tissue-specific LSCs. We suggest that BM-MSCs can be used for ocular surface regeneration in cases when autologous LSCs are absent or difficult to obtain. SIGNIFICANCE Damage of ocular surface represents one of the most common causes of impaired vision or even blindness. Cell therapy, based on transplantation of stem cells, is an optimal treatment. However, if limbal stem cells (LSCs) are not available, other sources of stem cells are tested. Mesenchymal stem cells (MSCs) are a convenient type of cell for stem cell therapy. The therapeutic potential of LSCs and MSCs was compared in an experimental model of corneal injury, and healing was observed following chemical injury. MSCs and tissue-specific LSCs had similar therapeutic effects. The results suggest that bone marrow-derived MSCs can be used for ocular surface regeneration in cases when autologous LSCs are absent or difficult to obtain.

Journal ArticleDOI
TL;DR: Autologous IS-AD-MSC+ BM-HSC co-infusion offers better long-term control of hyperglycemia as compared with allogenic SCT, and is a safe and viable treatment option for T1DM.

Journal ArticleDOI
TL;DR: The study demonstrates that 125I‐fSiO4@SPIOs are robust probe for long‐term tracking of MSCs in the treatment of ischemic brain and MSCS delivered via both routes improve neurobehavioral outcomes in ischeic rats.
Abstract: Quantitatively tracking engraftment of intracerebrally or intravenously transplanted stem cells and evaluating their concomitant therapeutic efficacy for stroke has been a challenge in the field of stem cell therapy. In this study, first, an MRI/SPECT/fluorescent tri-modal probe (125I-fSiO4@SPIOs) is synthesized for quantitatively tracking mesenchymal stem cells (MSCs) transplanted intracerebrally or intravenously into stroke rats, and then the therapeutic efficacy of MSCs delivered by both routes and the possible mechanism of the therapy are evaluated. It is demonstrated that (125)I-fSiO4@SPIOs have high efficiency for labeling MSCs without affecting their viability, differentiation, and proliferation capacity, and found that 35% of intracerebrally injected MSCs migrate along the corpus callosum to the lesion area, while 90% of intravenously injected MSCs remain trapped in the lung at 14 days after MSC transplantation. However, neurobehavioral outcomes are significantly improved in both transplantation groups, which are accompanied by increases of vascular endothelial growth factor, basic fibroblast growth factor, and tissue inhibitor of metalloproteinases-3 in blood, lung, and brain tissue (p < 0.05). The study demonstrates that 125I-fSiO4@SPIOs are robust probe for long-term tracking of MSCs in the treatment of ischemic brain and MSCs delivered via both routes improve neurobehavioral outcomes in ischemic rats.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that T-MSCs can differentiate into hepatocyte-like cells and ameliorate liver fibrosis via autophagy activation and down-regulation of TGF-β.
Abstract: Liver transplantation is the treatment of choice for chronic liver failure, although it is complicated by donor shortage, surgery-related complications, and immunological rejection. Cell transplantation is an alternative, minimally invasive treatment option with potentially fewer complications. We used human palatine tonsil as a novel source of mesenchymal stem cells (T-MSCs) and examined their ability to differentiate into hepatocyte-like cells in vivo and in vitro. Carbon tetrachloride (CCl4) mouse model was used to investigate the ability of T-MSCs to home to the site of liver injury. T-MSCs were only detected in the damaged liver, suggesting that they are disease-responsive. Differentiation of T-MSCs into hepatocyte-like cells was confirmed in vitro as determined by expression of hepatocyte markers. Next, we showed resolution of liver fibrosis by T-MSCs via reduction of TGF-β expression and collagen deposition in the liver. We hypothesized that autophagy activation was a possible mechanism for T-MSC-mediated liver recovery. In this report, we demonstrate for the first time that T-MSCs can differentiate into hepatocyte-like cells and ameliorate liver fibrosis via autophagy activation and down-regulation of TGF-β. These findings suggest that T-MSCs could be used as a novel source for stem cell therapy targeting liver diseases.

Journal ArticleDOI
TL;DR: A review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

Journal ArticleDOI
07 Oct 2015-PLOS ONE
TL;DR: Results indicate that the FoxM 1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM.
Abstract: Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM.

Journal ArticleDOI
TL;DR: Preclinical data offer better support for human trials of mesenchymal stromal cell (MSC) therapy in acute exacerbations of pulmonary fibrosis rather than the chronic phase of the disease.
Abstract: UNLABELLED Idiopathic pulmonary fibrosis is an inexorably progressive lung disease with few available treatments. New therapeutic options are needed. Stem cells have generated much enthusiasm for the treatment of several conditions, including lung diseases. Human trials of mesenchymal stromal cell (MSC) therapy for pulmonary fibrosis are under way. To shed light on the potential usefulness of MSCs for human disease, we aimed to systematically review the preclinical literature to determine if MSCs are beneficial in animal bleomycin pulmonary fibrosis models. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal bleomycin models of pulmonary fibrosis. Studies using embryonic stem cells or induced pluripotent stem cells were excluded. Seventeen studies were selected, all of which used MSCs in rodents. MSC therapy led to an improvement in bleomycin-induced lung collagen deposition in animal lungs and in the pulmonary fibrosis Ashcroft score in most studies. MSC therapy improved histopathology in almost all studies in which it was evaluated qualitatively. Furthermore, MSC therapy was found to improve 14-day survival in animals with bleomycin-induced pulmonary fibrosis. Bronchoalveolar lavage total and neutrophil counts, as well as transforming growth factor-β levels, were also reduced by MSCs. MSCs are beneficial in rodent bleomycin pulmonary fibrosis models. Since most studies examined the initial inflammatory phase rather than the chronic fibrotic phase, preclinical data offer better support for human trials of MSCs in acute exacerbations of pulmonary fibrosis rather than the chronic phase of the disease. SIGNIFICANCE There has been increased interest in mesenchymal stromal cell therapy for lung diseases. A few small clinical trials are under way in idiopathic pulmonary fibrosis. Preclinical evidence was assessed in a systematic review, as is often done for clinical studies. The existing studies offer better support for efficacy in the initial inflammatory phase rather than the fibrotic phase that human trials are targeting.

Journal ArticleDOI
TL;DR: In this article, a meta-analysis of preclinical data of cell therapy for ischemic heart disease was performed, which showed a significant improvement in mean left ventricular ejection fraction in treated compared with control animals.
Abstract: Rationale:In regenerative therapy for ischemic heart disease, use of both autologous and allogeneic stem cells has been investigated. Autologous cell can be applied without immunosuppression, but availability is restricted, and cells have been exposed to risk factors and aging. Allogeneic cell therapy enables preoperative production of potent cell lines and immediate availability of cell products, allowing off-the-shelf therapy. It is unknown which cell source is preferred with regard to improving cardiac function. Objective:We performed a meta-analysis of preclinical data of cell therapy for ischemic heart disease. Methods and Results:We conducted a systematic literature search to identify publications describing controlled preclinical trials of unmodified stem cell therapy in large animal models of myocardial ischemia. Data from 82 studies involving 1415 animals showed a significant improvement in mean left ventricular ejection fraction in treated compared with control animals (8.3%, 95% confidence inte...

Journal ArticleDOI
TL;DR: An overview of different types of stem cells currently being considered for cardiac regeneration are provided and why associated factors such as practicality and difficulty in cell collection should also be considered when selecting the stem cells for transplantation are discussed.
Abstract: The overall clinical cardiac regeneration experience suggests that stem cell therapy can be safely performed, but it also underlines the need for reproducible results for their effective use in a real-world scenario. One of the significant challenges is the identification and selection of the best suited stem cell type for regeneration therapy. Bone marrow mononuclear cells, bone marrow-derived mesenchymal stem cells, resident or endogenous cardiac stem cells, endothelial progenitor cells and induced pluripotent stem cells are some of the stem cell types which have been extensively tested for their ability to regenerate the lost myocardium. While most of these cell types are being evaluated in clinical trials for their safety and efficacy, results show significant heterogeneity in terms of efficacy. The enthusiasm surrounding regenerative medicine in the heart has been dampened by the reports of poor survival, proliferation, engraftment, and differentiation of the transplanted cells. Therefore, the primary challenge is to create clearcut evidence on what actually drives the improvement of cardiac function after the administration of stem cells. In this review, we provide an overview of different types of stem cells currently being considered for cardiac regeneration and discuss why associated factors such as practicality and difficulty in cell collection should also be considered when selecting the stem cells for transplantation. Next, we discuss how the experimental variables (type of disease, marker-based selection and use of different isolation techniques) can influence the study outcome. Finally, we provide an outline of the molecular and genetic approaches to increase the functional ability of stem cells before and after transplantation.

Journal ArticleDOI
TL;DR: An overview on the novel approaches through stem cell therapy to improve cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulcers, which are particularly challenging.
Abstract: Wound healing is a complex physiological process including overlapping phases (hemostatic/inflammatory, proliferating and remodeling phases). Every alteration in this mechanism might lead to pathological conditions of different medical relevance. Treatments for chronic non-healing wounds are expensive because reiterative treatments are needed. Regenerative medicine and in particular mesenchymal stem cells approach is emerging as new potential clinical application in wound healing.In the past decades, advance in the understanding of molecular mechanisms underlying wound healing process has led to extensive topical administration of growth factors as part of wound care. Currently, no definitive treatment is available and the research on optimal wound care depends upon the efficacy and cost-benefit of emerging therapies.Here we provide an overview on the novel approaches through stem cell therapy to improve cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulc...

Journal ArticleDOI
13 Apr 2015-PLOS ONE
TL;DR: Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity.
Abstract: Adipose stem cells (ASCs) are an appealing source of cells for therapeutic intervention; however, the environment from which ASCs are isolated may impact their usefulness. Using a range of functional assays, we have evaluated whether ASCs isolated from an obese environment are comparable to cells from non-obese adipose tissue. Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity. Metabolic analysis demonstrated that mitochondrial content and function was impaired in obese-derived ASCs resulting in changes in favored oxidative substrates. These findings highlight the impact of obesity on adult stem properties. Hence, caution should be exercised when considering the source of ASCs for cellular therapies since their therapeutic potential may be impaired.

Journal ArticleDOI
TL;DR: It is concluded that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke.
Abstract: The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs’ protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain.

Journal ArticleDOI
TL;DR: Taken together, these studies suggest a promising role for stem cell therapy in IBD although the substantial challenges, such as cost and inadequate/incomplete characterization of effect, limit their current use in clinical practice.
Abstract: Recent advances in inflammatory bowel disease (IBD) therapeutics include novel medical, surgical, and endoscopic treatments. Among these, stem cell therapy is still in its infancy, although multiple studies suggest that the immunomodulatory effect of stem cell therapy may reduce inflammation and tissue injury in patients with IBD. This review discusses the novel avenue of stem cell therapy and its potential role in the management of ulcerative colitis and Crohn's disease. We conducted a comprehensive literature search to identify studies examining the role of stem cell therapy (without conditioning and immunomodulatory regimens) in IBD. Taken together, these studies suggest a promising role for stem cell therapy in IBD although the substantial challenges, such as cost and inadequate/incomplete characterization of effect, limit their current use in clinical practice.

Journal ArticleDOI
TL;DR: It is demonstrated that successful gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can be an effective means to cure copper storage disease.
Abstract: The recent development of 3D-liver stem cell cultures (hepatic organoids) opens up new avenues for gene and/or stem cell therapy to treat liver disease. To test safety and efficacy, a relevant large animal model is essential but not yet established. Because of its shared pathologies and disease pathways, the dog is considered the best model for human liver disease. Here we report the establishment of a long-term canine hepatic organoid culture allowing undifferentiated expansion of progenitor cells that can be differentiated toward functional hepatocytes. We show that cultures can be initiated from fresh and frozen liver tissues using Tru-Cut or fine-needle biopsies. The use of Wnt agonists proved important for canine organoid proliferation and inhibition of differentiation. Finally, we demonstrate that successful gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can be an effective means to cure copper storage disease.

Journal ArticleDOI
14 Jan 2015-PLOS ONE
TL;DR: TALEN-mediated CLYBL engineering provides improved transgene expression and options for multiple genetic modification in human stem cells and reveals that CLyBL targeting resulted in stronger transgenes expression and less perturbation on local gene expression than PPP1R12C/AAVS1.
Abstract: Targeted genome engineering to robustly express transgenes is an essential methodology for stem cell-based research and therapy. Although designer nucleases have been used to drastically enhance gene editing efficiency, targeted addition and stable expression of transgenes to date is limited at single gene/locus and mostly PPP1R12C/AAVS1 in human stem cells. Here we constructed transcription activator-like effector nucleases (TALENs) targeting the safe-harbor like gene CLYBL to mediate reporter gene integration at 38%–58% efficiency, and used both AAVS1-TALENs and CLYBL-TALENs to simultaneously knock-in multiple reporter genes at dual safe-harbor loci in human induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs). The CLYBL-TALEN engineered cell lines maintained robust reporter expression during self-renewal and differentiation, and revealed that CLYBL targeting resulted in stronger transgene expression and less perturbation on local gene expression than PPP1R12C/AAVS1. TALEN-mediated CLYBL engineering provides improved transgene expression and options for multiple genetic modification in human stem cells.

Journal ArticleDOI
TL;DR: Evidence is provided that cell‐based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance tissue engineered bone quality in other craniofacial bone defects and deficiencies.
Abstract: Bone engineering of localized craniofacial osseous defects or deficiencies by stem cell therapy offers strong prospects to improve treatment predictability for patient care. The aim of this phase 1/2 randomized, controlled clinical trial was to evaluate reconstruction of bone deficiencies of the maxillary sinus with transplantation of autologous cells enriched with CD90+ stem cells and CD14+ monocytes. Thirty human participants requiring bone augmentation of the maxillary sinus were enrolled. Patients presenting with 50% to 80% bone deficiencies of the maxillary sinus were randomized to receive either stem cells delivered onto a β-tricalcium phosphate scaffold or scaffold alone. Four months after treatment, clinical, radiographic, and histologic analyses were performed to evaluate de novo engineered bone. At the time of alveolar bone core harvest, oral implants were installed in the engineered bone and later functionally restored with dental tooth prostheses. Radiographic analyses showed no difference in the total bone volume gained between treatment groups; however, density of the engineered bone was higher in patients receiving stem cells. Bone core biopsies showed that stem cell therapy provided the greatest benefit in the most severe deficiencies, yielding better bone quality than control patients, as evidenced by higher bone volume fraction (BVF; 0.5 versus 0.4; p = 0.04). Assessment of the relation between degree of CD90+ stem cell enrichment and BVF showed that the higher the CD90 composition of transplanted cells, the greater the BVF of regenerated bone (r = 0.56; p = 0.05). Oral implants were placed and restored with functionally loaded dental restorations in all patients and no treatment-related adverse events were reported at the 1-year follow-up. These results provide evidence that cell-based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance tissue engineered bone quality in other craniofacial bone defects and deficiencies (Clinicaltrials.gov NCT00980278). © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research

Journal ArticleDOI
TL;DR: Elevating levels of antioxidants in hUCMSCs with edaravone can significantly influence their hepatic tissue repair capacity, and this work demonstrated the pivotal role of antioxidant levels in human umbilical cord mesenchymal stem cells.
Abstract: One of the major problems influencing the therapeutic efficacy of stem cell therapy is the poor cell survival following transplantation. This is partly attributed to insufficient resistance of transplanted stem cells to oxidative and inflammatory stresses at the injured sites. In the current study, we demonstrated the pivotal role of antioxidant levels in human umbilical cord mesenchymal stem cells (hUCMSCs) dynamic in vitro anti-stress abilities against lipopolysaccharide (LPS)/H2O2 intoxication and in vivo therapeutic efficacy in a murine acute liver failure model induced by D-galactosamine/LPS (Gal/LPS) by either reducing the antioxidant levels with diethyl maleate (DEM) or increasing antioxidant levels with edaravone. Both the anti- and pro-oxidant treatments dramatically influenced the survival, apoptosis, and reactive oxygen species (ROS) production of hUCMSCs through the MAPK-PKC-Nrf2 pathway in vitro. When compared with untreated and DEM-treated cells, edaravone-treated hUCMSCs rescued NOD/SCID mice from Gal/LPS-induced death, significantly improved hepatic functions and promoted host liver regeneration. These effects were probably from increased stem cell homing, promoted proliferation, decreased apoptosis and enhanced secretion of hepatocyte growth factor (HGF) under hepatic stress environment. In conclusion, elevating levels of antioxidants in hUCMSCs with edaravone can significantly influence their hepatic tissue repair capacity.

Journal ArticleDOI
TL;DR: This review focuses on the generation and large-scale expansion of HSCs, which might overcome current limitations in the application of H SCs for clinical use and current proof of concept to replenish hematological homeostasis from non-hematological origin will be covered.
Abstract: Hematopoietic stem cell transplantation (HSCT) is the first field where human stem cell therapy was successful. Flooding interest on human stem cell therapy to cure previously incurable diseases is largely indebted to HSCT success. Allogeneic HSCT has been an important modality to cure various diseases including hematologic malignancies, various non-malignant hematologic diseases, primary immunodeficiency diseases, and inborn errors of metabolism, while autologous HSCT is generally performed to rescue bone marrow aplasia following high-dose chemotherapy for solid tumors or multiple myeloma. Recently, HSCs are also spotlighted in the field of regenerative medicine for the amelioration of symptoms caused by neurodegenerative diseases, heart diseases, and others. Although the demand for HSCs has been growing, their supply often fails to meet the demand of the patients needing transplant due to a lack of histocompatible donors or a limited cell number. This review focuses on the generation and large-scale expansion of HSCs, which might overcome current limitations in the application of HSCs for clinical use. Furthermore, current proof of concept to replenish hematological homeostasis from non-hematological origin will be covered.

Journal ArticleDOI
TL;DR: Current research advances in AD pathogenesis and stem cell technologies are discussed and the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.
Abstract: Underlying cognitive declines in Alzheimer's disease (AD) are the result of neuron and neuronal process losses due to a wide range of factors. To date, all efforts to develop therapies that target specific AD-related pathways have failed in late-stage human trials. As a result, an emerging consensus in the field is that treatment of AD patients with currently available drug candidates might come too late, likely as a result of significant neuronal loss in the brain. In this regard, cell-replacement therapies, such as human embryonic stem cell- or induced pluripotent stem cell-derived neural cells, hold potential for treating AD patients. With the advent of stem cell technologies and the ability to transform these cells into different types of central nervous system neurons and glial cells, some success in stem cell therapy has been reported in animal models of AD. However, many more steps remain before stem cell therapies will be clinically feasible for AD and related disorders in humans. In this review, we will discuss current research advances in AD pathogenesis and stem cell technologies; additionally, the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.