scispace - formally typeset
Search or ask a question

Showing papers by "Carrie A. Davis published in 2012"


Journal ArticleDOI
Sarah Djebali, Carrie A. Davis1, Angelika Merkel, Alexander Dobin1, Timo Lassmann, Ali Mortazavi2, Ali Mortazavi3, Andrea Tanzer, Julien Lagarde, Wei Lin1, Felix Schlesinger1, Chenghai Xue1, Georgi K. Marinov2, Jainab Khatun4, Brian A. Williams2, Chris Zaleski1, Joel Rozowsky5, Marion S. Röder, Felix Kokocinski6, Rehab F. Abdelhamid, Tyler Alioto, Igor Antoshechkin2, Michael T. Baer1, Nadav Bar7, Philippe Batut1, Kimberly Bell1, Ian Bell8, Sudipto K. Chakrabortty1, Xian Chen9, Jacqueline Chrast10, Joao Curado, Thomas Derrien, Jorg Drenkow1, Erica Dumais8, Jacqueline Dumais8, Radha Duttagupta8, Emilie Falconnet11, Meagan Fastuca1, Kata Fejes-Toth1, Pedro G. Ferreira, Sylvain Foissac8, Melissa J. Fullwood12, Hui Gao8, David Gonzalez, Assaf Gordon1, Harsha P. Gunawardena9, Cédric Howald10, Sonali Jha1, Rory Johnson, Philipp Kapranov8, Brandon King2, Colin Kingswood, Oscar Junhong Luo12, Eddie Park3, Kimberly Persaud1, Jonathan B. Preall1, Paolo Ribeca, Brian A. Risk4, Daniel Robyr11, Michael Sammeth, Lorian Schaffer2, Lei-Hoon See1, Atif Shahab12, Jørgen Skancke7, Ana Maria Suzuki, Hazuki Takahashi, Hagen Tilgner13, Diane Trout2, Nathalie Walters10, Huaien Wang1, John A. Wrobel4, Yanbao Yu9, Xiaoan Ruan12, Yoshihide Hayashizaki, Jennifer Harrow6, Mark Gerstein5, Tim Hubbard6, Alexandre Reymond10, Stylianos E. Antonarakis11, Gregory J. Hannon1, Morgan C. Giddings4, Morgan C. Giddings9, Yijun Ruan12, Barbara J. Wold2, Piero Carninci, Roderic Guigó14, Thomas R. Gingeras8, Thomas R. Gingeras1 
06 Sep 2012-Nature
TL;DR: Evidence that three-quarters of the human genome is capable of being transcribed is reported, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs that prompt a redefinition of the concept of a gene.
Abstract: Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.

4,450 citations


Journal ArticleDOI
TL;DR: The most complete human lncRNA annotation to date is presented, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts, and expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes.
Abstract: The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences-particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.

4,291 citations


01 Sep 2012
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.

2,767 citations



Journal ArticleDOI
TL;DR: The coSI measure, based on RNA-seq reads mapping to exon junctions and borders, is introduced, to assess the degree of splicing completion around internal exons, and significant enrichment of spliceosomal snRNAs in chromatin-associated RNA is found compared with other cellular RNA fractions and other nonspliceosome sn RNAs.
Abstract: Splicing remains an incompletely understood process. Recent findings suggest that chromatin structure participates in its regulation. Here, we analyze the RNA from subcellular fractions obtained through RNA-seq in the cell line K562. We show that in the human genome, splicing occurs predominantly during transcription. We introduce the coSI measure, based on RNA-seq reads mapping to exon junctions and borders, to assess the degree of splicing completion around internal exons. We show that, as expected, splicing is almost fully completed in cytosolic polyA+ RNA. In chromatin-associated RNA (which includes the RNA that is being transcribed), for 5.6% of exons, the removal of the surrounding introns is fully completed, compared with 0.3% of exons for which no intron-removal has occurred. The remaining exons exist as a mixture of spliced and fewer unspliced molecules, with a median coSI of 0.75. Thus, most RNAs undergo splicing while being transcribed: "co-transcriptional splicing." Consistent with co-transcriptional spliceosome assembly and splicing, we have found significant enrichment of spliceosomal snRNAs in chromatin-associated RNA compared with other cellular RNA fractions and other nonspliceosomal snRNAs. CoSI scores decrease along the gene, pointing to a "first transcribed, first spliced" rule, yet more downstream exons carry other characteristics, favoring rapid, co-transcriptional intron removal. Exons with low coSI values, that is, in the process of being spliced, are enriched with chromatin marks, consistent with a role for chromatin in splicing during transcription. For alternative exons and long noncoding RNAs, splicing tends to occur later, and the latter might remain unspliced in some cases.

448 citations


Journal ArticleDOI
John A. Stamatoyannopoulos1, Michael Snyder2, Ross C. Hardison3, Bing Ren4, Thomas R. Gingeras5, David M. Gilbert6, Mark Groudine7, M. A. Bender7, Rajinder Kaul1, Theresa K. Canfield1, Erica Giste1, Audra K. Johnson1, Mia Zhang7, Gayathri Balasundaram7, Rachel Byron7, Vaughan Roach1, Peter J. Sabo1, Richard Sandstrom1, A Sandra Stehling1, Robert E. Thurman1, Sherman M. Weissman8, Philip Cayting8, Manoj Hariharan2, Jin Lian8, Yong Cheng2, Stephen G. Landt2, Zhihai Ma2, Barbara J. Wold9, Job Dekker10, Gregory E. Crawford11, Cheryl A. Keller3, Weisheng Wu3, Christopher T. Morrissey3, Swathi Ashok Kumar3, Tejaswini Mishra3, Deepti Jain3, Marta Byrska-Bishop3, Daniel Blankenberg3, Bryan R. Lajoie2, Gaurav Jain10, Amartya Sanyal10, Kaun-Bei Chen11, Olgert Denas11, James Taylor12, Gerd A. Blobel13, Mitchell J. Weiss13, Max Pimkin13, Wulan Deng13, Georgi K. Marinov9, Brian A. Williams9, Katherine I. Fisher-Aylor9, Gilberto DeSalvo9, Anthony Kiralusha9, Diane Trout9, Henry Amrhein9, Ali Mortazavi14, Lee Edsall4, David McCleary4, Samantha Kuan4, Yin Shen4, Feng Yue4, Zhen Ye4, Carrie A. Davis5, Chris Zaleski5, Sonali Jha5, Chenghai Xue5, Alexander Dobin5, Wei Lin5, Meagan Fastuca5, Huaien Wang5, Roderic Guigó, Sarah Djebali, Julien Lagarde, Tyrone Ryba6, Takayo Sasaki6, Venkat S. Malladi15, Melissa S. Cline15, Vanessa M. Kirkup15, Katrina Learned15, Kate R. Rosenbloom15, W. James Kent15, Elise A. Feingold16, Peter J. Good16, Michael J. Pazin16, Rebecca F. Lowdon16, Leslie B Adams16 
TL;DR: The Mouse E NCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome to enable a broad range of mouse genomics efforts.
Abstract: To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome

445 citations


Journal ArticleDOI
TL;DR: A computational framework to robustly identify RNA editing sites using transcriptome and genome deep-sequencing data from the same individual is developed, finding that editing of non-Alu sites appears to be dependent on nearby edited Alu sites, possibly through the locally formed double-stranded RNA structure.
Abstract: We developed a computational framework to robustly identify RNA editing sites using transcriptome and genome deep-sequencing data from the same individual. As compared with previous methods, our approach identified a large number of Alu and non-Alu RNA editing sites with high specificity. We also found that editing of non-Alu sites appears to be dependent on nearby edited Alu sites, possibly through the locally formed double-stranded RNA structure.

321 citations


Journal ArticleDOI
TL;DR: A notable difference is revealed in the prediction accuracy of expression levels of transcription start sites (TSSs) captured by different technologies and RNA extraction protocols, which implies that these features regulate transcription in a highly coordinated manner.
Abstract: Statistical models have been used to quantify the relationship between gene expression and transcription factor (TF) binding signals. Here we apply the models to the large-scale data generated by the ENCODE project to study transcriptional regulation by TFs. Our results reveal a notable difference in the prediction accuracy of expression levels of transcription start sites (TSSs) captured by different technologies and RNA extraction protocols. In general, the expression levels of TSSs with high CpG content are more predictable than those with low CpG content. For genes with alternative TSSs, the expression levels of downstream TSSs are more predictable than those of the upstream ones. Different TF categories and specific TFs vary substantially in their contributions to predicting expression. Between two cell lines, the differential expression of TSS can be precisely reflected by the difference of TF-binding signals in a quantitative manner, arguing against the conventional on-and-off model of TF binding. Finally, we explore the relationships between TF-binding signals and other chromatin features such as histone modifications and DNase hypersensitivity for determining expression. The models imply that these features regulate transcription in a highly coordinated manner.

179 citations