scispace - formally typeset
Search or ask a question

Showing papers by "T. J. Sumner published in 2016"


Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Massimo Bassan5, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi6, N. Brandt7, M. Caleno1, L. Carbone6, Antonella Cavalleri8, A. Cesarini6, Giacomo Ciani6, G. Congedo6, A. M. Cruise9, Karsten Danzmann2, M. de Deus Silva1, R. De Rosa, M. Diaz-Aguilo10, L. Di Fiore, Ingo Diepholz2, G. Dixon9, Rita Dolesi6, N. Dunbar7, Luigi Ferraioli11, Valerio Ferroni6, Walter Fichter, E. D. Fitzsimons12, R. Flatscher7, M. Freschi1, A. F. García Marín2, C. García Marirrodriga1, R. Gerndt7, Lluis Gesa10, Ferran Gibert6, Domenico Giardini11, R. Giusteri6, F. Guzmán2, Aniello Grado13, Catia Grimani14, A. Grynagier, J. Grzymisch1, I. Harrison15, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, D. Hoyland9, Mauro Hueller6, Henri Inchauspe3, Oliver Jennrich1, Ph. Jetzer16, Ulrich Johann7, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow17, J. A. Lobo10, Ivan Lloro10, L. Liu6, J. P. López-Zaragoza10, R. Maarschalkerweerd15, Davor Mance11, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, S. Madden1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes15, L. Mendes1, A. Monsky2, Daniele Nicolodi6, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd17, Antoine Petiteau3, P. Pivato6, Eric Plagnol3, P. Prat3, U. Ragnit1, B. Rais3, Juan Ramos-Castro18, J. Reiche2, D. I. Robertson17, H. Rozemeijer1, F. Rivas10, G. Russano6, J Sanjuán10, P. Sarra, A. Schleicher7, D. Shaul4, Jacob Slutsky19, Carlos F. Sopuerta10, Ruggero Stanga20, F. Steier2, T. J. Sumner4, D. Texier1, James Ira Thorpe19, C. Trenkel7, Michael Tröbs2, H. B. Tu6, Daniele Vetrugno6, Stefano Vitale6, V Wand2, Gudrun Wanner2, H. Ward17, C. Warren7, Peter Wass4, D. Wealthy7, W. J. Weber6, L. Wissel2, A. Wittchen2, A. Zambotti6, C. Zanoni6, Tobias Ziegler7, Peter Zweifel11 
TL;DR: The first results of the LISA Pathfinder in-flight experiment demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density.
Abstract: We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

523 citations


Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, P. Beltrame5, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, A. W. Bradley1, R. Bramante1, Sidney Cahn6, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A.A. Chiller10, C. Chiller10, A. Currie2, J. E. Cutter11, T. J. R. Davison5, L. de Viveiros12, A. Dobi13, J. E. Y. Dobson14, E. Druszkiewicz15, B. N. Edwards6, C. H. Faham13, S. Fiorucci13, R. J. Gaitskell9, V. M. Gehman13, C. Ghag14, K.R. Gibson1, M. G. D. Gilchriese13, C. R. Hall4, M. Hanhardt3, S. J. Haselschwardt8, S. A. Hertel6, D. P. Hogan16, M. Horn6, D. Q. Huang9, C. M. Ignarra17, M. Ihm13, R.G. Jacobsen13, W. Ji1, K. Kazkaz7, D. Khaitan15, R. Knoche4, N.A. Larsen6, C. Lee1, B. G. Lenardo7, K. T. Lesko13, A. Lindote12, M.I. Lopes12, D.C. Malling9, A. Manalaysay11, R. L. Mannino18, M. F. Marzioni5, Daniel McKinsey6, D. M. Mei10, J. Mock19, M. Moongweluwan15, J. A. Morad11, A. St. J. Murphy5, C. Nehrkorn8, H. N. Nelson8, F. Neves12, K. O'Sullivan6, K. C. Oliver-Mallory13, R. A. Ott11, K. J. Palladino17, M. Pangilinan9, E. K. Pease6, P. Phelps1, L. Reichhart14, C. Rhyne9, S. Shaw14, T. A. Shutt1, C. Silva12, V. N. Solovov12, P. Sorensen13, S. Stephenson11, T. J. Sumner2, Matthew Szydagis19, D. J. Taylor, W. C. Taylor9, B. P. Tennyson6, P. A. Terman18, D. R. Tiedt3, W. H. To1, Mani Tripathi11, L. Tvrznikova6, S. Uvarov11, J.R. Verbus9, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell8, F.L.H. Wolfs15, K. Yazdani2, Sarah Young19, Chao Zhang10 
TL;DR: This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV.
Abstract: We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×10^{4} kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c^{-2}, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c^{-2} WIMP mass.

460 citations


Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, P. Beltrame5, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, A. W. Bradley1, R. Bramante1, Sidney Cahn6, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A.A. Chiller10, C. Chiller10, A. Currie2, J. E. Cutter11, T. J. R. Davison5, L. de Viveiros12, A. Dobi13, J. E. Y. Dobson14, E. Druszkiewicz15, B. N. Edwards6, C. H. Faham13, S. Fiorucci13, R. J. Gaitskell9, V. M. Gehman13, C. Ghag14, K.R. Gibson1, M. G. D. Gilchriese13, C. R. Hall4, M. Hanhardt3, S. J. Haselschwardt8, S. A. Hertel6, D. P. Hogan16, M. Horn6, D. Q. Huang9, C. M. Ignarra17, M. Ihm13, R.G. Jacobsen13, W. Ji1, K. Kazkaz7, D. Khaitan15, R. Knoche4, N.A. Larsen6, C. Lee1, B. G. Lenardo7, K. T. Lesko13, A. Lindote12, M.I. Lopes12, D.C. Malling9, A. Manalaysay11, R. L. Mannino18, M. F. Marzioni5, Daniel McKinsey6, D. M. Mei10, J. Mock19, M. Moongweluwan15, J. A. Morad11, A. St. J. Murphy5, C. Nehrkorn8, H. N. Nelson8, F. Neves12, K. O'Sullivan6, K. C. Oliver-Mallory13, R. A. Ott11, K. J. Palladino17, M. Pangilinan9, E. K. Pease6, P. Phelps1, L. Reichhart14, C. Rhyne9, S. Shaw14, T. A. Shutt1, C. Silva12, V. N. Solovov12, P. Sorensen13, S. Stephenson11, T. J. Sumner2, Matthew Szydagis19, D. J. Taylor, W. C. Taylor9, B. P. Tennyson6, P. A. Terman18, D. R. Tiedt3, W. H. To1, Mani Tripathi11, L. Tvrznikova6, S. Uvarov11, J.R. Verbus9, R. C. Webb18, J. T. White18, T. J. Whitis1, Michael S. Witherell8, F.L.H. Wolfs15, K. Yazdani2, Sarah Young19, Chao Zhang10 
TL;DR: The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Abstract: We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4} kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41} cm^{2} (σ_{p}=2.9×10^{-39} cm^{2}) at 33 GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

195 citations


Journal ArticleDOI
TL;DR: In this paper, the electron-recoil (ER) response of the LUX dark matter detector based upon 170 000 highly pure and spatially uniform tritium decays is investigated.
Abstract: We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170 000 highly pure and spatially uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 and 105 V/cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a reanalysis of the LUX run 3 weakly interacting massive particle search.

92 citations


Posted Content
TL;DR: The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota.
Abstract: The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed $\textit{in situ}$ in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. The nuclear recoil energy from the first neutron scatter in the TPC was reconstructed using the measured scattering angle defined by double-scatter neutron events within the active xenon volume. We measured the absolute charge ($Q_{y}$) and light ($L_{y}$) yields at an average electric field of 180 V/cm for nuclear recoil energies spanning 0.7 to 74 keV and 1.1 to 74 keV, respectively. This calibration of the nuclear recoil signal yields will permit the further refinement of liquid xenon nuclear recoil signal models and, importantly for dark matter searches, clearly demonstrates measured ionization and scintillation signals in this medium at recoil energies down to $\mathcal{O}$(1 keV).

55 citations


Posted Content
27 Aug 2016

50 citations


Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi5, N. Brandt6, A. Bursi, M. Caleno1, Antonella Cavalleri7, A. Cesarini5, M. Cruise8, Karsten Danzmann2, M. de Deus Silva1, D. Desiderio, E. Piersanti, Ingo Diepholz2, Rita Dolesi5, N. Dunbar6, Luigi Ferraioli9, Valerio Ferroni5, Ewan Fitzsimons6, R. Flatscher6, M. Freschi1, J. Gallegos1, C. García Marirrodriga1, R. Gerndt6, Lluis Gesa10, Ferran Gibert5, Domenico Giardini9, R. Giusteri5, Catia Grimani11, J. Grzymisch1, I. Harrison12, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, Mauro Hueller5, J. Huesler1, Henri Inchauspe3, Oliver Jennrich1, Philippe Jetzer13, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow14, Ivan Lloro10, L. Liu5, J. P. López-Zaragoza10, R. Maarschalkerweerd12, S. Madden1, Davor Mance9, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes12, Luis Mendes1, A. Moroni, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd14, Antoine Petiteau3, P. Pivato5, Eric Plagnol3, P. Prat3, U. Ragnit1, Juan Ramos-Castro15, J. Reiche2, J. A. Romera Perez1, D. I. Robertson14, H. Rozemeijer1, F. Rivas10, G. Russano5, P. Sarra, A. Schleicher6, Jacob Slutsky16, Carlos F. Sopuerta10, T. J. Sumner4, D. Texier1, James Ira Thorpe16, R. Tomlinson6, C. Trenkel6, Daniele Vetrugno5, Stefano Vitale5, Gudrun Wanner2, H. Ward14, C. Warren6, Peter Wass4, D. Wealthy6, W. J. Weber5, A. Wittchen2, C. Zanoni5, Tobias Ziegler6, Peter Zweifel9 
TL;DR: The LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested.
Abstract: LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 x 10(exp -14) m s(exp -2) Hz(exp - 1/2) within the 130 mHz frequency band in one dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s(exp -2) level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

19 citations


Posted Content
10 Feb 2016
TL;DR: In this article, the spin-dependent WIMP-nucleon elastic cross sections from LUX data acquired in 2013 were used to obtain a profile likelihood ratio analysis for fiducial exposure.
Abstract: We present the first experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of $1.4~\times~10^{4}~\text{kg}\cdot~\text{days}$ of fiducial exposure allows 90% CL upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of $\sigma_n~=~9.4~\times~10^{-41}~\text{cm}^2$ ($\sigma_p~=~2.9~\times~10^{-39}~\text{cm}^2$) at 33 GeV/c$^2$. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

17 citations


Journal ArticleDOI
D. S. Akerib1, D. S. Akerib2, D. S. Akerib3, Henrique Araujo4, X. Bai5, A. J. Bailey4, J. Balajthy6, P. Beltrame7, Ethan Bernard8, A. Bernstein9, T. P. Biesiadzinski2, T. P. Biesiadzinski3, T. P. Biesiadzinski1, E. M. Boulton8, A. W. Bradley1, R. Bramante3, R. Bramante2, R. Bramante1, Sidney Cahn8, M. C. Carmona-Benitez10, C. Chan11, J.J. Chapman11, A.A. Chiller12, C. Chiller12, A. Currie4, J. E. Cutter13, T. J. R. Davison7, L. de Viveiros14, A. Dobi15, J. E. Y. Dobson16, E. Druszkiewicz17, B. N. Edwards8, C. H. Faham15, S. Fiorucci11, R. J. Gaitskell11, V. M. Gehman15, C. Ghag16, K.R. Gibson1, M. G. D. Gilchriese15, C. R. Hall6, M. Hanhardt5, S. J. Haselschwardt10, S. A. Hertel8, S. A. Hertel18, D. P. Hogan18, M. Horn8, M. Horn18, D. Q. Huang11, C. M. Ignarra3, C. M. Ignarra2, M. Ihm18, R.G. Jacobsen18, W. Ji1, W. Ji2, W. Ji3, K. Kazkaz9, D. Khaitan17, R. Knoche6, N.A. Larsen8, C. Lee3, C. Lee1, C. Lee2, B. Lenardo9, B. Lenardo13, K. T. Lesko15, A. Lindote14, M.I. Lopes14, D.C. Malling11, A. Manalaysay13, R. L. Mannino19, M. F. Marzioni7, Daniel McKinsey18, Daniel McKinsey8, D. M. Mei12, J. Mock20, M. Moongweluwan17, J. A. Morad13, A. St. J. Murphy7, C. Nehrkorn10, H. N. Nelson10, F. Neves14, K. O׳Sullivan15, K. O׳Sullivan18, K. O׳Sullivan8, K. C. Oliver-Mallory18, R. A. Ott13, K. J. Palladino2, K. J. Palladino3, M. Pangilinan11, E. K. Pease8, P. Phelps1, L. Reichhart16, C. Rhyne11, S. Shaw16, T. A. Shutt3, T. A. Shutt2, T. A. Shutt1, C. Silva14, W. Skulski17, V. N. Solovov14, P. Sorensen15, S. Stephenson13, T. J. Sumner4, Matthew Szydagis20, D. J. Taylor, W. C. Taylor11, B. P. Tennyson8, P. A. Terman19, D. R. Tiedt5, W. H. To3, W. H. To1, W. H. To2, Mani Tripathi13, L. Tvrznikova8, S. Uvarov13, J.R. Verbus11, R. C. Webb19, J. T. White19, T. J. Whitis3, T. J. Whitis2, T. J. Whitis1, Michael S. Witherell10, F.L.H. Wolfs17, J. Yin17, Sarah Young20, Chao Zhang12 
TL;DR: LUX as discussed by the authors is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles, which is continuously and reliably operating since its full underground deployment in early 2013.
Abstract: LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles. Signals from the detector are processed with an FPGA-based digital trigger system that analyzes the incoming data in real-time, with just a few microsecond latency. The system enables first pass selection of events of interest based on their pulse shape characteristics and 3D localization of the interactions. It has been shown to be >99% efficient in triggering on S2 signals induced by only few extracted liquid electrons. It is continuously and reliably operating since its full underground deployment in early 2013. This document is an overview of the systems capabilities, its inner workings, and its performance.

15 citations


Journal ArticleDOI
TL;DR: LUX (Large Underground Xenon) is a WIMP direct detection experiment deployed at the 4850' level of the Sanford Underground Research Facility (SURF) in Lead, SD, operating a 370 kg dual-phase xenon TPC.

8 citations