scispace - formally typeset
Search or ask a question
Institution

Banaras Hindu University

EducationVaranasi, Uttar Pradesh, India
About: Banaras Hindu University is a education organization based out in Varanasi, Uttar Pradesh, India. It is known for research contribution in the topics: Population & Catalysis. The organization has 11858 authors who have published 23917 publications receiving 464677 citations. The organization is also known as: Kashi Hindu Vishvavidyalay & Benares Hindu University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper showed that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.
Abstract: Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O 2 ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of N-fertilization on rice plant growth (number of tillers, shoot and root biomass, root volume and porosity, grain yield) and their relationship with methane flux was investigated in three irrigated varieties of Oryza sativa L. (Sarju-52, Malviya-36 and Pant Dhan-4).
Abstract: The effects of N-fertilization on rice plant growth (number of tillers, shoot and root biomass, root volume and porosity, grain yield) and their relationship with methane flux was investigated in three irrigated varieties of Oryza sativa L. (Sarju-52, Malviya-36 and Pant Dhan-4). The study design consisted of (a) control (unfertilized) vegetated, (b) fertilized vegetated, (c) control (unfertilized) bare, and (d) fertilized bare plots; laid down in a completely randomized block design in triplicate. Urea was applied in (b) and (d) in three split doses at a rate of 40, 30 and 30 kg N ha−1 at the time of transplanting, active tillering and grain filling stages of crop. The field was submerged before transplanting and the water depth ranged from 6.7 to 23.9 cm in response to rainfall. Every 10 d, crop growth and CH4 flux were measured from d 9 to 115 after rice transplanting. Sarju-52 and Pant Dhan-4 were similar in phenological stages but different than Malviya-36. Results showed that there were significant differences in all the growth variables measured for all the rice varieties due to growth period and fertilization. Variety×treatment, variety×growth period and treatment×growth period interactions were significant for all growth variables. Maximum CH4 flux from control (vegetated) plots was observed at the flowering stage (65 d after transplanting in Sarju-52 and Pant Dhan-4 and 76 d after transplanting in Malviya-36) and ranged from 10.79 to 14.20 mg m−2 h−1. In vegetated fertilized plots, maximum CH4 emission was observed 10 d later than in the vegetated control plots and ranged from 14.43 to 20.20 mg m−2 h−1. These values were from 7- to 12.3-fold higher than bare (unfertilized) plots. All growth variables, except mean shoot and root biomass, showed strong positive relationships with seasonal CH4 emission. It was concluded that the CH4 source strength was dependent on the rice variety under cultivation, its phenology, growth variables and soil fertilization.

190 citations

Journal ArticleDOI
TL;DR: A closer look is taken at the physiological responses of chitosan molecule, which induces mechanisms in plants against various biotic (fungi, bacteria, and insects) and abiotic stresses and helps in formation of barriers that enhances plant's productivity.
Abstract: Biopolymer “Chitosan” has received much interest for potential wide application in agriculture due to its excellent biocompatibility, biodegradability and bioactivity. This naturally occurring molecule with interesting physiological potential has been getting more attention in recent years. Chitosan enhanced the efficacy of plants to reduce the deleterious effect of unfavorable conditions as well as on plant growth. Chitosan affects various physiological responses like plant immunity, defense mechanisms involving various enzymes such as, phenylalanine ammonium lyase, polyphenol oxidase, tyrosine ammonia lyase and antioxidant enzymes viz., activities superoxide dismutase, catalase and peroxide against adverse conditions. Recent studies have shown that chitosan induces mechanisms in plants against various biotic (fungi, bacteria, and insects) and abiotic (salinity, drought, heavy metal and cold) stresses and helps in formation of barriers that enhances plant's productivity. This paper takes a closer look at the physiological responses of chitosan molecule.

190 citations

Journal ArticleDOI
TL;DR: In this article, a linear filter is used to determine the apparent resistivity curve from the kernel function of a known layer configuration, which is based on the application of linear filters.
Abstract: In this paper a fast method is developed for computing apparent resistivity curves for known layer configurations. The method is based on the application of a linear filter to determine the apparent resistivity curve from, the kernel function.

189 citations

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +380 moreInstitutions (49)
TL;DR: In this article, the PHENIX experiment presented results from the Relativistic Heavy Ion Collider 2005 run with polarized proton collisions at 200 GeV, for inclusive {pi}{sup 0} production at midrapidity.
Abstract: The PHENIX experiment presents results from the Relativistic Heavy Ion Collider 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive {pi}{sup 0} production at midrapidity. Unpolarized cross section results are given for transverse momenta p{sub T}=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p{sub T}. The cross section is described well for p{sub T} 2 GeV/c, by perturbative QCD. Double helicity asymmetries ALL are presented based on a factor of 5 improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton. Using one representative model of gluon polarization it is demonstrated that the gluon spin contribution to the proton spin is significantly constrained.

189 citations


Authors

Showing all 12110 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Prashant Shukla131134185287
Sudhir Malik130166998522
Vijay P. Singh106169955831
Rakesh Agrawal105668107569
Gautam Sethi10242531088
Jens Christian Frisvad9945331760
Sandeep Kumar94156338652
E. De Clercq9077430296
Praveen Kumar88133935718
Shyam Sundar8661430289
Arvind Kumar8587633484
Padma Kant Shukla84123235521
Brajesh K. Singh8340124101
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

96% related

Panjab University, Chandigarh
18.7K papers, 461K citations

96% related

Council of Scientific and Industrial Research
31.8K papers, 707.7K citations

94% related

Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

93% related

Jadavpur University
27.6K papers, 422K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202399
2022351
20211,606
20201,336
20191,162
20181,053