scispace - formally typeset
Search or ask a question

Showing papers by "CABI published in 2010"


Journal ArticleDOI
TL;DR: The UK Government's Foresight Global Food and Farming Futures project as mentioned in this paper aims to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture.
Abstract: Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70-100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government's Foresight Global Food and Farming Futures project.

467 citations


Journal ArticleDOI
TL;DR: Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes.

282 citations


Journal ArticleDOI
TL;DR: The practice of biological control in relation to the principles of ABS is described, illustrated extensively by case studies and successes obtained with biological control, and the very limited monetary benefits generated in biological control are emphasised.
Abstract: Under the Convention on Biological Diversity (CBD) countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties [i.e. Access and Benefit Sharing (ABS)]. This also applies to species collected for potential use in biological control. Recent applications of CBD principles have already made it difficult or impossible to collect and export natural enemies for biological control research in several countries. If such an approach is widely applied it would impede this very successful and environmentally safe pest management method based on the use of biological diversity. The CBD is required to agree a comprehensive Access and Benefit Sharing process in 2010, in preparation for which the IOBC (International Organization for Biological Control of Noxious Animals and Plants) Global Commission on Biological Control and Access and Benefit Sharing has prepared this position paper. Here, we first describe the practice of biological control in relation to the principles of ABS, illustrated extensively by case studies and successes obtained with biological control. Next, we emphasise the very limited monetary benefits generated in biological control when compared to other fields of ABS such as the collection of germplasm for development of human drugs, chemical pesticides or crop cultivars. Subsequently, we inform the biological control community of good ABS practice and challenges, and we hope to make clear to the community involved in ABS under the CBD the special situation with regard to biological control. Finally, based on the non-commercial academic research model, we make recommendations which would facilitate the practice of collection and exchange of biological control agents, propose a workable framework to assist policy makers and biological control practitioners, and urge biological control leaders in each country to get involved in the discussions with their national ABS contact point to take their needs into consideration.

216 citations


Journal ArticleDOI
TL;DR: There are two ecologically distinct groups of alien species (plants and insects versus vertebrates) with strikingly different habitat affinities, which makes an overall assessment of habitat invasions in Europe possible.
Abstract: Aim To provide the first comparative overview on the current numbers of alien species that invade representative European terrestrial and freshwater habitats for a range of taxonomic groups. Location Europe. Methods Numbers of naturalized alien species of plants, insects, herptiles, birds and mammals occurring in 10 habitats defined according to the European Nature Information System (EUNIS) were obtained from 115 regional data sets. Only species introduced after ad 1500 were considered. Data were analysed by ANCOVA and regression trees to assess whether differences exist among taxonomic groups in terms of their habitat affinity, and whether the pattern of occurrence of alien species in European habitats interacts with macroecological factors such as insularity, latitude or area. Results The highest numbers of alien plant and insect species were found in human-made, urban or cultivated habitats; if controlled for habitat area in the region, wetland and riparian habitats appeared to support relatively high numbers of alien plant species too. Invasions by vertebrates were more evenly distributed among habitats, with aquatic and riparian, woodland and cultivated land most invaded. Mires, bogs and fens, grassland, heathland and scrub were generally less invaded. Habitat and taxonomic group explained most variation in the proportions of alien species occurring in individual habitats related to the total number of alien species in a region, and the basic pattern determined by these factors was fine-tuned by geographical variables, namely by the mainland–island contrast and latitude, and differed among taxonomic groups. Main conclusions There are two ecologically distinct groups of alien species (plants and insects versus vertebrates) with strikingly different habitat affinities. Invasions by these two contrasting groups are complementary in terms of habitat use, which makes an overall assessment of habitat invasions in Europe possible. Since numbers of naturalized species in habitats are correlated among taxa within these two groups, the data collected for one group of vertebrates, for example, could be used to estimate the habitat-specific numbers of alien species for other vertebrate groups with reasonable precision, and the same holds true for insects and plants.

190 citations


Journal ArticleDOI
Julie Flood1
TL;DR: The Global Plant Clinic (GPC) as discussed by the authors is a global plant health initiative that uses in-country services to deliver plant health advice to farmers at the point-of-demand.
Abstract: Rapid food price rises have highlighted serious concerns about food security globally and have had a huge impact on achieving Millennium Development Goal 1. Since 2007, an estimated 100 million more people have fallen into absolute poverty. Most live in developing countries where low incomes (less than $1 per day) make it difficult to access food. Access to sufficient food for dietary needs and food preferences defines food security. However, whilst price rises have brought food security into sharp focus, underlying problems need to be addressed. Over the last three to four decades, there has been chronic under-investment in agriculture at all levels. Development aid to agriculture has declined and often in-country policies do not support the sector. Low crop yields are common in many developing countries and improved productivity is vital to reducing rural poverty and increasing food security. Whilst the causes of low productivity are complex, one major contributory factor is crop losses due to plant health problems. Often accurate information on the extent of these losses is missing but estimates of 30–40% loss annually from “field to fork” are common. Any future solution regarding improved global food security must address these losses and that means improving plant health. Two trans-boundary diseases, wheat stem rust race Ug99 and Coffee Wilt Disease of Coffea are highlighted. CABI has a number of plant health initiatives and one radical approach (Global Plant Clinic) involves partnership with in-country services to deliver plant health advice to farmers at the point of demand. Such innovations are entirely consistent with a proposed new “Green Revolution” which would need to be “knowledge intensive”.

187 citations


Journal ArticleDOI
TL;DR: The first components of this freely available, participatory and semantic Global Names Architecture are reviewed, revitalizing comparative biology with a broad perspective to reveal previously inaccessible trends and discontinuities, so helping us to reveal unfamiliar biological truths.
Abstract: Those who seek answers to big, broad questions about biology, especially questions emphasizing the organism (taxonomy, evolution and ecology), will soon benefit from an emerging names-based infrastructure. It will draw on the almost universal association of organism names with biological information to index and interconnect information distributed across the Internet. The result will be a virtual data commons, expanding as further data are shared, allowing biology to become more of a ‘big science’. Informatics devices will exploit this ‘big new biology’, revitalizing comparative biology with a broad perspective to reveal previously inaccessible trends and discontinuities, so helping us to reveal unfamiliar biological truths. Here, we review the first components of this freely available, participatory and semantic Global Names Architecture.

178 citations


Journal ArticleDOI
TL;DR: In this article, a two-step approach integrating knowledge from biogeography and population biology with available Jatropha field data was used to predict Jatrophas fitness in response to climate by relating natural occurrence recorded in herbaria with bioclimatic geodatasets.
Abstract: Although acclaimed as a biofuel crop with high potential to sustainably replace fossil fuels, Jatropha curcas L. remains a poorly studied plant. Reliable yield assessments with conventional methods require agroclimatic and physiological knowledge, which is not yet available for Jatropha. To fill this gap, we tested a novel two-step approach integrating knowledge from biogeography and population biology with available Jatropha field data. In the first step, using MaxEnt, a widely implemented model in biogeography, we predicted Jatropha fitness in response to climate by relating natural occurrence recorded in herbaria with bioclimatic geodatasets. In the second step, we relied on population biology principles supported by seed mass addition experiments to relate fitness to reproductive potential, hence seed yield. Jatropha seed yield in response to climate was mapped worldwide for actual (1950-2000 average) and future (2020) climate conditions. The modelled Jatropha seed yield was validated against a set of on-field yield assessments (R2=0.67, P l 0.001). The discrepancies between estimated and measured yields were partially explained by model uncertainties, as quantified by the sensitivity analysis of our modelling (R2=0.57, P=0.001). Jatropha has a pan-tropical distribution, plus specific adaptability to hot temperate areas. Climate variables most significantly affecting modelled yield response were annual average temperature, minimum temperature, annual precipitation and precipitation seasonality.

134 citations


Journal ArticleDOI
TL;DR: There was only a small effect of reduced sieve element amino acid concentration on aphid reproduction, which is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo.
Abstract: The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae (Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance.

124 citations


Journal ArticleDOI
TL;DR: The results suggest that the characteristics of tetraploid C. stoebe pre-adapted them (compared to diploid conspecifics) for spread and persistence of the species into habitats in North America characterized by a more continental climate.
Abstract: Summary 1. Introduced plants have the potential to rapidly evolve traits of ecological importance that may add to their innate potential to become invasive. During invasions, selection may favour genotypes that are already pre-adapted to conditions in the new habitat and, over time, alter the characteristics of subsequent generations. 2. Spotted knapweed (Centaurea stoebe) occurs in two predominantly spatially separated cytotypes in its native range (Europe–Western Asia), but currently only the tetraploid form has been confirmed in the introduced range (North America), where it is invasive. We used several common garden experiments to examine, across multiple populations, whether tetraploids and diploids from the native range differ in life cycle, leaf traits and reproductive capacity and if such differences would explain the predominance of tetraploids and their advance into new habitats in the introduced range. We also compared the same traits in tetraploids from the native and introduced range to determine whether any rapid adaptive changes had occurred since introduction that may have enhanced invasive potential of the species in North America. 3. We found tetraploids had lower specific leaf area, less lamina dissection and fewer, narrower leaves than diploids. Diploids exhibited a monocarpic life cycle and produced few if any accessory rosettes. Diploids produced significantly more seeds per capitulum and had more capitula per plant than tetraploids. In contrast, the vast majority of European tetraploids continued to flower in both seasons by regenerating from multiple secondary rosettes, demonstrating a predominantly polycarpic life cycle. 4. During early growth tetraploids from North America achieved greater biomass than both tetraploids and diploids from the native range but this did not manifest as larger above-ground biomass at maturity. In North American tetraploids there was also evidence of a shift towards a more strictly polycarpic life cycle, less leaf dissection, greater carbon investment per leaf, and greater seed production per capitulum. 5. Synthesis. Our results suggest that the characteristics of tetraploid C. stoebe pre-adapted them (compared to diploid conspecifics) for spread and persistence of the species into habitats in North America characterized by a more continental climate. After the species’ introduction, small but potentially important shifts in tetraploid biology have occurred that may have contributed significantly to successful invasion.

96 citations


Journal ArticleDOI
TL;DR: Comparison of the genome sequences revealed that CBSV is highly heterogeneous at the isolate level as well as the strain level, and an unusual HAM1-like protein, whilst of identical nucleotide length, was found to have the lowest homology.
Abstract: The complete genome sequence for an isolate of the Ugandan and Tanzanian strain types of Cassava brown streak virus have been determined using the novel approach of non-directed next generation sequencing. Comparison of the genome sequences revealed that CBSV is highly heterogeneous at the isolate level as well as the strain level. The isolate of the Ugandan strain was found to have a genome 9,070 nucleotides long coding for a polypeptide with 2,902 amino acid residues. The isolate of the Tanzanian strain was 9,008 nucleotides long and coded for a polypeptide with 2,916 amino acid residues. Nucleotide identity between the isolates across the genome was 76%, with protein encoding regions 57–77% and individual proteins had 65–91% amino acid similarity. In addition between the two strains four protein products (PIPO, CI, NIa-Vpg and coat protein) varied in size and an unusual HAM1-like protein, whilst of identical nucleotide length, was found to have the lowest homology. The implication of diversity of CBSV is discussed in the context of speciation, evolution, development of diagnostics, and breeding for resistance.

92 citations


BookDOI
Prakash S. Shetty1
01 Jan 2010
TL;DR: This chapter discusses nutrition, immunity and infection, as well as probiotics, prebiotics and immunity, and the role of nutrients in immune functions.
Abstract: 1. Introduction to nutrition, immunity and infection 2. Immune systems: the defence mechanisms of the body 3. Role of nutrients in immune functions 4. Undernutrition, host defence mechanisms and risk of infection 5. Infections and undernutrition: causation and consequences 6. Vitamin A deficiency and risk of infection 7. Iron status and risk of infection 8. Zinc deficiency and infections 9. Nutrition, HIV/AIDS and Tuberculosis 10. Nutrition, immunity and infections of infants and children 11. Maternal nutrition, infections and birth outcomes 12. Nutrition, immunity and infections in the elderly 13. Nutrition, immunity and chronic diseases 14. Probiotics, prebiotics and immunity 15. Food Allergy.

Journal ArticleDOI
TL;DR: The great potential of manipulating natural enemies of herbivores to improve biological pest control is illustrated, with a six-arm below-ground olfactometer used to select for a strain of H. bacteriophora that is more readily attracted to (E)-β-caryophyllene.
Abstract: The efficacy of natural enemies as biological control agents against insect pests can theoretically be enhanced by artificial selection for high responsiveness to foraging cues. The recent discovery that maize roots damaged by the western corn rootworm (WCR) emit a key attractant for insect-killing nematodes has opened the way to explore whether a selection strategy can improve the control of root pests. The compound in question, (E)-beta-caryophyllene, is only weakly attractive to Heterorhabditis bacteriophora, one of the most infectious nematodes against WCR. To overcome this drawback, we used a six-arm below-ground olfactometer to select for a strain of H. bacteriophora that is more readily attracted to (E)-beta-caryophyllene. After six generations of selection, the selected strain responded considerably better and moved twice as rapidly towards a (E)-beta-caryophyllene source than the original strain. There was a minor trade-off between this enhanced responsiveness and nematode infectiveness. Yet, in subsequent field tests, the selected strain was significantly more effective than the original strain in reducing WCR populations in plots with a maize variety that releases (E)-beta-caryophyllene, but not in plots with a maize variety that does not emit this root signal. These results illustrate the great potential of manipulating natural enemies of herbivores to improve biological pest control.

Journal ArticleDOI
TL;DR: In Tanzania, the disease was first reported in the Kagera region of north west Tanzania, bordering Lake Victoria, Uganda, Rwanda and Burundi, in September 2005 and has since been reported as slow.
Abstract: In Tanzania, the disease was first reported in the Kagera region of north west Tanzania, bordering Lake Victoria, Uganda, Rwanda and Burundi, in September 2005. Spread has continued, but not to other major banana growing areas. In Kenya, the disease was first reported in September 2006 in the Teso District, of western Kenya, bordering Uganda. Spread has since been reported as slow. In Burundi the disease was first observed during October 2006. The current status of BXW in Burundi is unclear with no recent substantiated reports.

Journal ArticleDOI
07 Jun 2010
TL;DR: Several alien species may have a positive impact on the economy, for example parasitoids and predators introduced for the biological control of important pests and as vectors of diseases.
Abstract: Th is chapter reviews the eff ects of alien terrestrial arthropods on the economy, society and environment in Europe. Many alien insect and mite species cause serious socio-economic hazards as pests of agriculture, horticulture, stored products and forestry. Th ey may also aff ect human or animal health. Surprisingly, there is relatively little information available on the exact yield and fi nancial losses due to alien agricultural and forestry pests in Europe, particularly at continental scale. Several alien species may have a positive impact on the economy, for example parasitoids and predators introduced for the biological control of important pests. Invasive alien arthropods can also cause environmental hazards. Th ey may aff ect native biodiversity through various mechanisms, including herbivory, predation, parasitism, competition for resource and space, or as vectors of diseases. Th ey can also aff ect ecosystem services and processes through cascading eff ects. However, these ecological impacts are poorly studied, particularly in Europe, where only a handful cases have been reported.


Journal ArticleDOI
23 Nov 2010
TL;DR: The meeting revealed that currently major species complexes in the genus Colletotrichum are being revised and the identities of many pathogens clarified on the basis of molecular phylogenies, and that the genomes of four species are sequenced and decoded providing an enormous amount of data that are used to increase the understanding of the biology of ColletOTrichum species.
Abstract: The presentations of the Special Interest Group meeting Colletotrichum: species, ecology and interactions, held on 1 August 2010 during IMC9 in Edinburgh, UK, are outlined. Seven research projects, ranged from systematics and population genetics to host-pathogen interactions and genome projects were presented. The meeting revealed that currently major species complexes in the genus Colletotrichum are being revised and the identities of many pathogens clarified on the basis of molecular phylogenies, and that the genomes of four species are sequenced and decoded providing an enormous amount of data that are used to increase our understanding of the biology of Colletotrichum species.

Journal ArticleDOI
TL;DR: It is concluded that, if properly applied and in combination with the right maize variety, the release of these nematodes can be as effective as other control methods.
Abstract: Because the ferocious maize pest Diabrotica virgifera virgifera LeConte can adapt to all currently used control strategies, focus has turned to the development of novel, more sustainable control methods, such as biological control using entomopathogenic nematodes (EPN). A good understanding of the biology and behaviour of these potential control agents is essential for their successful deployment. Root systems of many maize varieties emit (E)-β-caryophyllene (EβC) in response to feeding by larvae of the beetle D. v. virgifera. This sesquiterpene has been shown to attract certain species of EPN, thereby enhancing their control potential. In this study, we tested the effect of this root-produced volatile on the field efficacy of the three EPN Heterorhabditis bacteriophora, Heterorhabditis megidis and Steinernema feltiae against D. v. virgifera larvae in southern Hungary. By comparing beetle emergence and root damage for two maize varieties, one that emits EβC and one that does not, it was found that root protection by H. megidis and S. feltiae was higher on the emitting variety, but this was not the case for H. bacteriophora. Overall, all three nematode species showed good control potential. We conclude that, if properly applied and in combination with the right maize variety, the release of these nematodes can be as effective as other control methods.

Journal ArticleDOI
TL;DR: Although buffer zones large enough to allow eradication would be economically unpalatable, an increase of the minimum width of the focus zone from 1 to 5 km and the safety zone from 5 to 50 km would improve the management of local dispersal.
Abstract: Europe is attempting to contain or, in some regions, to eradicate the invading and maize destroying western corn rootworm (WCR). Eradication and containment measures include crop rotation and insecticide treatments within different types of buffer zones surrounding new introduction points. However, quantitative estimates of the relationship between the probability of adult dispersal and distance from an introduction point have not been used to determine the width of buffer zones. We address this by fitting dispersal models of the negative exponential and negative power law families in logarithmic and non-logarithmic form to recapture data from nine mark-release-recapture experiments of marked WCR adults from habitats as typically found in the vicinity of airports in southern Hungary in 2003 and 2004. After each release of 4000-6300 marked WCR, recaptures were recorded three times using non-baited yellow sticky traps at 30-305 m from the release point and sex pheromone-baited transparent sticky traps placed at 500-3500 m. Both the negative exponential and negative power law models in non-log form presented the best overall fit to the numbers of recaptured adults (1% recapture rate). The negative exponential model in log form presented the best fit to the data in the tail. The models suggested that half of the dispersing WCR adults travelling along a given bearing will have travelled between 117 and 425 m and 1% of the adults between 775 and 8250 m after 1 day. An individual-based model of dispersal and mortality over a generation of WCR adults indicated that 9.7-45.3% of the adults would escape a focus zone (where maize is only grown once in 3 consecutive years) of 1 km radius and 0.6―21% a safety zone (where maize is only grown once in 2 consecutive years) of 5 km radius and consequently current European Commission (EC) measures are inadequate for the eradication of WCR in Europe. Although buffer zones large enough to allow eradication would be economically unpalatable, an increase of the minimum width of the focus zone from 1 to 5 km and the safety zone from 5 to 50 km would improve the management of local dispersal.

Journal ArticleDOI
TL;DR: The results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella.
Abstract: The enemy release hypothesis posits that the initial success of invasive species depends on the scarcity and poor adaptation of native natural enemies such as predators and parasitoids. As for parasitoids, invading hosts are first attacked at low rates by a species-poor complex of mainly generalist species. Over the years, however, parasitoid richness may increase either because the invading host continuously encounters new parasitoid species during its spread (geographic spread-hypothesis) or because local parasitoids need different periods of time to adapt to the novel host (adjustment-hypothesis). Both scenarios should result in a continuous increase of parasitoid richness over time. In this study, we reconstructed the development of the hymenopteran parasitoid complex of the invasive leafminer Cameraria ohridella (Lepidoptera, Gracillariidae). Our results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella. The same variables also explain the individual parasitism rates of several species in the parasitoid complex, but fail to explain the abundance of others. Evidence supporting the “geographic spread-hypothesis” was found in the parasitism pattern of Cirrospilus talitzkii (Hymenoptera, Eulophidae), while that of Pediobius saulius, another eulophid, indicated an increase of parasitism rates by behavioral, phenological or biological adjustments. Compared to fully integrated host-parasitoid associations, however, parasitism rates of C. ohridella are still very low. In addition, the parasitoid complex lacks specialists, provided that the species determined are valid and not complexes of cryptic (and presumably more specialized) species. Probably, the adjustment of specialist parasitoids requires more than a few decades, particularly to invaders which establish in ecological niches free of native hosts, thus eliminating any possibility of recruitment of pre-adapted parasitoids.

Journal ArticleDOI
TL;DR: By targeting grassland restoration within landscapes containing high proportions of species-rich grassland, dispersal limitation problems associated with restoration for invertebrate assemblages are more likely to be overcome.
Abstract: 1. Declines in area and quality of species-rich mesotrophic and calcareous grasslands have occurred all across Europe. While the European Union has promoted schemes to restore these grasslands, the emphasis for management has remained largely focused on plants. Here we focus on restoration of the phytophagous beetles of these grasslands. Although local management, particularly that which promotes the establishment of host plants, is key to restoration success, dispersal limitation is also likely to be an important limiting factor during the restoration of phytophagous beetle assemblages. 2. Using a 3-year multi-site experiment, we investigated how restoration success of phytophagous beetles was affected by hay-spreading management (intended to introduce target plant species), success in restoration of the plant communities and the landscape context within which restoration was attempted. 3. Restoration success of the plants was greatest where green hay spreading had been used to introduce seeds into restoration sites. Beetle restoration success increased over time, although hay-spreading had no direct effect. However, restoration success of the beetles was positively correlated with restoration success of the plants. 4. Overall restoration success of the phytophagous beetles was positively correlated with the proportion of species-rich grassland in the landscape, as was the restoration success of the polyphagous beetles. Restoration success for beetles capable of flight and those showing oligophagous host plant specialism were also positively correlated with connectivity to species-rich grasslands. There was no indication that beetles not capable of flight showed greater dependence on landscape scale factors than flying species. 5.Synthesis and applications. Increasing the similarity of the plant community at restoration sites to target species-rich grasslands will promote restoration success for the phytophagous beetles. However, landscape context is also important, with restoration being approximately twice as successful in those landscapes containing high as opposed to low proportions of species-rich grassland. By targeting grassland restoration within landscapes containing high proportions of species-rich grassland, dispersal limitation problems associated with restoration for invertebrate assemblages are more likely to be overcome.



Journal ArticleDOI
TL;DR: It is suggested that control of A. philoxeroides in high-moisture and nutrient poor environments should be more effective than control under nutrient rich and low-moistsure soils.
Abstract: Sun Y, Ding J & Frye MJ (2010). Effects of resource availability on tolerance of herbivory in the invasive Alternanthera philoxeroides and the native Alternanthera sessilis. Weed Research 50, 527–536. Summary Resource availability is known to affect herbivore selectivity and the ability of plants to respond to herbivores. However, little information is available for the performance of invasive plants subject to insect herbivory and limited resources availability. We conducted a glasshouse experiment using both the invasive Alternanthera philoxeroides and its native congener Alternanthera sessilis, to compare the effects of resource availability on plant tolerance to herbivory. The results suggest that water availability affects plant tolerance to herbivory, such that stressful water conditions promoted greater herbivore tolerance for A. philoxeroides and decreased herbivore tolerance for A. sessilis. The addition of fertiliser also affected the plant’s ability to respond to herbivory. Fertilised plants of both species generated more biomass and had greater tolerance to herbivory than unfertilised plants. Adding fertiliser appeared to increase the compensation capacity to herbivory for A. philoxeroides. In unfertilised conditions, moisture had no effect on A. philoxeroides tolerance to herbivory, and plants performed better under drought conditions. The results of this study may help to further our understanding of why biological control efforts against A. philoxeroides have been successful in some aquatic environments, but not others. Our study suggests that control of A. philoxeroides in high-moisture and nutrient poor environments should be more effective than control under nutrient rich and low-moisture soils. Understanding the mechanism of invasive plant compensation under different environmental conditions will be important for improving and predicting management efficiency.

Journal ArticleDOI
Arne Witt1
TL;DR: The impacts of invasive Prosopis species in Africa, particularly in Kenya and South Africa are assessed and countries should endeavour to abide by the Principles and Criteria for Sustainable Biofuel Production developed by the Roundtable on Sustainable Biofuels.
Abstract: A large number of proposed biofuel crops share the same traits as known invasive plant species, many of which are already present in Africa and include species such as Prosopis glandulosa Torrey (Mimosaceae), P. juliflora (Sw.) DC, Leucaena leucocephala (Lam.) de Wit (Mimosaceae), Azadirachta indica A. Juss. (Meliaceae), and others. In this paper, we mainly assess the impacts of invasive Prosopis species in Africa, particularly in Kenya and South Africa. Introduced Prosopis species have invaded over 4 million hectares in Africa, threatening crop and pasture production, reducing underground water reserves, and displacing native plant and animal species. This has major implications for millions of people who depend on natural resources for their survival. It is therefore suggested that known invasive or potentially invasive plant species not be introduced to countries or regions for biofuel production. If (after a stringent cost–benefit analysis) the introduction of a potentially invasive species is deemed critical for economic development and the benefits clearly outweigh the potential costs, countries should endeavour to abide by the Principles and Criteria for Sustainable Biofuel Production developed by the Roundtable on Sustainable Biofuels.

Journal ArticleDOI
TL;DR: The results reveal that endophytes can occur either more or less frequently, depending on soil nutrient and plant water content and AM colonization, and propose that these patterns were the result of differences in fungal growth responses to nutrient availability in the leaves, which can be affected by resources obtained from the soil or symbiotic fungi in the roots.

Journal ArticleDOI
Philip Nyeko1, K.E. Mutitu, B. Otieno, G. N. Ngae, Roger Day2 
TL;DR: There was no obvious peak in L. invasa population abundance although a general decline was observed in dry months, and the potential for host resistance in managing the pest is discussed.
Abstract: Leptocybe invasa, an invasive gall-inducing wasp of Australian origin, recently emerged as a serious eucalyptus pest of global importance. We examined the spatial and temporal variations in L. invasa adult populations and evaluated eucalyptus gemplasms for infestations by the wasp in Uganda and Kenya. There were significant differences in L. invasa abundance, gall incidence, severity and damage index between sites. Adults occurred throughout the year, indicating overlapping generations since the adults are known to live <7 d. There was no obvious peak in L. invasa population abundance although a general decline was observed in dry months. Out of 35 eucalyptus germplasms evaluated for L. invasa infestations, only Eucalyptus henryi and the clonal hybrids GC 578 and GC581 were resistant to the pest. Most germplasms were ranked as tolerant or moderately susceptible to wasp attack. Highly susceptible germplasms included Eucalyptus camaldulensis, GC540 and GC784 in Tororo, Uganda, and MAU1, GC14, GC15 and GC10 ...


Journal ArticleDOI
TL;DR: In this paper, the authors examined regional genetic structure in the invasive Fallopia complex, consisting of F. japonica, F. sachalinensis and their hybrid F. x bohemica, in seven regions in Germany and Switzerland using RAPD analysis and flow cytometry.
Abstract: Interspecific hybridization can be a driving force for evolutionary processes during plant invasions, by increasing genetic variation and creating novel gene combinations, thereby promoting genetic differentiation among populations of invasive species in the introduced range. We examined regional genetic structure in the invasive Fallopia complex, consisting of F. japonica var. japonica, F. sachalinensis and their hybrid F. x bohemica, in seven regions in Germany and Switzerland using RAPD analysis and flow cytometry. All individuals identified as F. japonica var. japonica had the same RAPD phenotype, while F. sachalinensis (11 RAPD phenotypes for 11 sampled individuals) and F. x bohemica (24 RAPD phenotypes for 32 sampled individuals) showed high genotypic diversity. Bayesian cluster analysis revealed three distinct genetic clusters. The majority of F. x bohemica individuals were assigned to a unique genetic cluster that differed from those of the parental species, while the other F. x bohemica individuals had different degrees of admixture to the three genetic clusters. At the regional scale, the occurrence of male-fertile F. sachalinensis coincided with the distribution of F. x bohemica plants showing a high percentage of assignment to both parental species, suggesting that they originated from hybridization between the parental species. In contrast, in regions where male-fertile F. sachalinensis were absent, F. x bohemica belonged to the non-admixed genetic group, indicating multiple introductions of hybrids or sexual reproduction among hybrids. We also found regional differentiation in the gene pool of F. x bohemica, with individuals within the same region more similar to each other than to individuals from different regions.

Journal ArticleDOI
TL;DR: Substantial genetic variation is found within this species that is best explained by ecological specialisation on different host plant taxa, with patterns of genetic variation at the nuclear marker suggesting incomplete lineage sorting and/or gene flow between differenthost plant forms of R. antirrhini.
Abstract: Plant feeding insects and the plants they feed upon represent an ecological association that is thought to be a key factor for the diversification of many plant feeding insects, through differential adaptation to different plant selective pressures. While a number of studies have investigated diversification of plant feeding insects above the species level, relatively less attention has been given to patterns of diversification within species, particularly those that also require plants for oviposition and subsequent larval development. In the case of plant feeding insects that also require plant tissues for the completion of their reproductive cycle through larval development, the divergent selective pressure not only acts on adults, but on the full life history of the insect. Here we focus attention on Rhinusa antirrhini (Curculionidae), a species of weevil broadly distributed across Europe that both feeds on, and oviposits and develops within, species of the plant genus Linaria (Plantaginaceae). Using a combination of mtDNA (COII) and nuclear DNA (EF1-alpha) sequencing and copulation experiments we assess evidence for host associated genetic differentiation within R. antirrhini. We find substantial genetic variation within this species that is best explained by ecological specialisation on different host plant taxa. This genetic differentiation is most pronounced in the mtDNA marker, with patterns of genetic variation at the nuclear marker suggesting incomplete lineage sorting and/or gene flow between different host plant forms of R. antirrhini, whose origin is estimated to date to the mid-Pliocene (3.77 Mya; 2.91-4.80 Mya).

Journal ArticleDOI
TL;DR: Nematodes have the potential to reduce D. v. virgifera larvae in most soils; however, their efficacy can be higher in maize fields with heavy clay or silty clay soils than in sandy soils, which is in contrast to the common assumption that nematodes perform better in sandy soil than in heavy soils.
Abstract: The use of entomopathogenic nematodes is one potential non-chemical approach to control the larvae of the invasive western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe. This study investigated the efficacy of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson and Klein (Rh., Heterorhabditidae) and Steinernema feltiae Filipjev (Rh., Steinernematidae) in reducing D. v. virgifera as a function of soil characteristics. A field experiment was repeated four times in southern Hungary using artificially infested maize plants potted into three different soils. Sleeve gauze cages were used to assess the number of emerging adult D. v. virgifera from the treatments and untreated controls. Results indicate that nematodes have the potential to reduce D. v. virgifera larvae in most soils; however, their efficacy can be higher in maize fields with heavy clay or silty clay soils than in sandy soils, which is in contrast to the common assumption that nematodes perform better in sandy soils than in heavy soils.