scispace - formally typeset
Search or ask a question
Institution

Drexel University

EducationPhiladelphia, Pennsylvania, United States
About: Drexel University is a education organization based out in Philadelphia, Pennsylvania, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 26770 authors who have published 51438 publications receiving 1949443 citations. The organization is also known as: Drexel & Drexel Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of MMPs and their inhibitors in tumor invasion, angiogenesis and metastasis with special emphasis on the gelatinases, M MP-2 and MMP-9 are discussed.
Abstract: Although a considerable amount of effort has been placed on discovering the etiologies of cancer, the majority of the basic cancer research existing today has focused on understanding the molecular mechanism of tumor formation and metastasis. Metastatic spread of tumors continues to be a major obstacle to successful treatment of malignant tumors. Approximately 30% of those patients diagnosed with a solid tumor have a clinically detectable metastasis and for the remaining 70%, metastases are continually being formed throughout the life of the tumor. Even after the tumor is excised, the threat of death is attributable to the metastasis that may occur through the remaining tumor cells. In addition, treating the metastasis often proves futile since metastasis often vary in size, composition, and anatomical location. New treatments blocking the formation of metastasis will provide greater chances of survival for cancer patients. One family of enzymes that has been shown over the years to play a role in tumor progression is the matrix metalloproteinase (MMP) family. The main function of MMPs, also known as matrixins, is degradation of the extracellular matrix physiologic function involving MMPs include wound healing, bone resorption and mammary involution. MMPs, however, also contribute to pathological conditions including rheumatoid arthritis, coronary artery disease, and cancer. Tumor cells are believed to utilize the matrix degrading capability of these enzymes to spread to distant sites. In addition, MMPs also are thought to promote the growth of these tumor cells once they have metastasized. This review will discuss the role of MMPs and their inhibitors in tumor invasion, angiogenesis and metastasis with special emphasis on the gelatinases, MMP-2 and MMP-9.

586 citations

Journal ArticleDOI
TL;DR: This work demonstrates the analysis, individually and as mixtures, of 95 bacterial artificial chromosome clones that cover the 4.7-Mb human major histocompatibility complex region and obtains accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length.
Abstract: We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.

585 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems, and predict a black hole merger rate of about 1.6 × 10-7 yr-1 Mpc-3, implying gravity-wave detection rates substantially greater than the corresponding rates from neutron star mergers.
Abstract: Mergers of black hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates that are too low to be of observational interest. In this Letter, we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black hole binaries become more tightly bound by superelastic encounters with other cluster members and are ultimately ejected from the cluster. The majority of escaping black hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black hole merger rate of about 1.6 × 10-7 yr-1 Mpc-3, implying gravity-wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first-generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first 2 years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.

585 citations

Journal ArticleDOI
TL;DR: The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once--that provides explicit predictions of how multitasking behavior can result in interference, or lack thereof, for a given set of tasks.
Abstract: The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking-that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual and motor resources). The theory specifies a parsimonious mechanism that allows for concurrent execution, resource acquisition, and resolution of resource conflicts, without the need for specialized executive processes. By instantiating this mechanism as a computational model, threaded cognition provides explicit predictions of how multitasking behavior can result in interference, or lack thereof, for a given set of tasks. The authors illustrate the theory in model simulations of several representative domains ranging from simple laboratory tasks such as dual-choice tasks to complex real-world domains such as driving and driver distraction.

585 citations

Journal ArticleDOI
TL;DR: In this article, the authors fabricated polycrystalline bulk samples of Ti 3 Al 1.1 C 1.8 by reactively hot isostatically pressing a mixture of titanium, graphite, and Al 4 C 3 powders at a pressure of 70 MPa and temperature of 1400°C for 16 h.
Abstract: Polycrystalline bulk samples of Ti 3 Al 1.1 C 1.8 have been fabricated by reactively hot isostatically pressing a mixture of titanium, graphite, and Al 4 C 3 powders at a pressure of 70 MPa and temperature of 1400°C for 16 h. The hot isostatically pressed samples are predominantly single phase (containing ∼4 vol% Al 2 O 3 ), fully dense, and have a grain size of ∼25 μm. This carbide is similar to Ti 3 SiC 2 , with which it is isostructural, and has an unusual combination of properties. It is relatively soft (Vickers hardness of ∼3.5 GPa) and elastically stiff (Young's modulus of 297 GPa and shear modulus of 124 GPa); yet, it is lightweight (density of 4.2 g/cm 3 ) and easily machinable. The room-temperature electrical resistivity is 0.35 ± 0.03 μΩ.m and decreases linearly as the temperature decreases. The temperature coefficient of resistivity is 0.0031 K -1 . The coefficient of thermal expansion, in the temperature range of 25°-1200°C, is 9.0 (± 0.2) x 10 -6 K -1 . The room-temperature compressive and flexural strengths are 560 ± 20 and 375 ± 15 MPa, respectively. In contrast to flexure, where the failure is brittle, the failure in compression is noncatastrophic and is accompanied by some plasticity. The origin of that plasticity is believed to be the formation of a shear band that is oriented at an angle of ∼45° to the applied load. Ti 3 Al 1.1 C 1.8 also is a highly damage-tolerant material; a 10-kg-load Vickers indentation made in a bar 1.5 mm thick reduces the postindentation flexural strength by ∼7%. This material also is quite resistant to thermal shock. At temperatures of >1000°C, the deformation in compression is accompanied by significant plasticity and very respectable ultimate compressive stresses (200 MPa at 1200°C).

583 citations


Authors

Showing all 26976 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Peter Libby211932182724
Virginia M.-Y. Lee194993148820
Yury Gogotsi171956144520
Dennis R. Burton16468390959
M.-Marsel Mesulam15055890772
Edward G. Lakatta14685888637
Gordon T. Richards144613110666
David Price138168793535
Joseph Sodroski13854277070
Hannu Kurki-Suonio13843399607
Jun Lu135152699767
Stephen F. Badylak13353057083
Michael E. Thase13192375995
Edna B. Foa12958873034
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022382
20212,354
20202,344
20192,235
20182,165