scispace - formally typeset
Search or ask a question
Institution

Drexel University

EducationPhiladelphia, Pennsylvania, United States
About: Drexel University is a education organization based out in Philadelphia, Pennsylvania, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 26770 authors who have published 51438 publications receiving 1949443 citations. The organization is also known as: Drexel & Drexel Institute.


Papers
More filters
Book ChapterDOI
TL;DR: In this article, the authors found that firms with busy boards exhibit lower market-to-book ratios, weaker profitability, and lower sensitivity of CEO turnover to firm performance than those of inside-dominated boards.
Abstract: Firms with busy boards, those in which a majority of outside directors hold three or more directorships, are associated with weak corporate governance. These firms exhibit lower market-to-book ratios, weaker profitability, and lower sensitivity of CEO turnover to firm performance. Independent but busy boards display CEO turnover-performance sensitivities indistinguishable from those of inside-dominated boards. Departures of busy outside directors generate positive abnormal returns. When directors become busy as a result of acquiring an additional directorship, other companies in which they hold board seats experience negative abnormal returns. Busy outside directors are more likely to depart boards following poor performance.

1,094 citations

Journal ArticleDOI
TL;DR: Free-standing and flexible sandwich-like MXene/carbon nanotube (CNT) paper, composed of alternating MXene and CNT layers, is fabricated using a simple filtration method, and exhibits high volumetric capacitances, good rate performances, and excellent cycling stability when employed as electrodes in supercapacitors.
Abstract: Dr. M.-Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. F. Zhang, K. L. Van Aken, Prof. M. W. Barsoum, Prof. Y. Gogotsi Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute Drexel University 3141 Chestnut Street , Philadelphia , PA 19104 , USA E-mail: gogotsi@drexel.edu Z. Ling Carbon Research Laboratory Liaoning Key Lab for Energy Materials and Chemical Engineering State Key Lab of Fine Chemicals Dalian University of Technology Dalian 116024 , China C. F. Zhang State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 , China

1,074 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the target selection and resulting properties of a spectroscopic sample of luminous red galaxies (LRGs) from the imaging data of the Sloan Digital Sky Survey (SDSS).
Abstract: We describe the target selection and resulting properties of a spectroscopic sample of luminous red galaxies (LRGs) from the imaging data of the Sloan Digital Sky Survey (SDSS). These galaxies are selected on the basis of color and magnitude to yield a sample of luminous intrinsically red galaxies that extends fainter and farther than the main flux-limited portion of the SDSS galaxy spectroscopic sample. The sample is designed to impose a passively evolving luminosity and rest-frame color cut to a redshift of 0.38. Additional, yet more luminous red galaxies are included to a redshift of ~0.5. Approximately 12 of these galaxies per square degree are targeted for spectroscopy, so the sample will number over 100,000 with the full survey. SDSS commissioning data indicate that the algorithm efficiently selects luminous (M^+_g ≈ -21.4) red galaxies, that the spectroscopic success rate is very high, and that the resulting set of galaxies is approximately volume limited out to z = 0.38. When the SDSS is complete, the LRG spectroscopic sample will fill over 1 h^(-3) Gpc^3 with an approximately homogeneous population of galaxies and will therefore be well suited to studies of large-scale structure and clusters out to z = 0.5.

1,073 citations

Journal ArticleDOI
TL;DR: L lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS.
Abstract: A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2 The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering The voltage profile and X-ray adsorption near edge struc

1,070 citations

Journal ArticleDOI
TL;DR: It is found that plastic-adherent cells from bone marrow grew most rapidly when they were initially plated at low densities to generate single-cell derived colonies, and apparently retained their multipotentiality for differentiation.
Abstract: Cultures of plastic-adherent cells from bone marrow have attracted interest because of their ability to support growth of hematopoietic stem cells, their multipotentiality for differentiation, and their possible use for cell and gene therapy. Here we found that the cells grew most rapidly when they were initially plated at low densities (1.5 or 3.0 cells/cm2) to generate single-cell derived colonies. The cultures displayed a lag phase of about 5 days, a log phase of rapid growth of about 5 days, and then a stationary phase. FACS analysis demonstrated that stationary cultures contained a major population of large and moderately granular cells and a minor population of small and agranular cells here referred to as recycling stem cells or RS-1 cells. During the lag phase, the RS-1 cells gave rise to a new population of small and densely granular cells (RS-2 cells). During the late log phase, the RS-2 cells decreased in number and regenerated the pool of RS-1 cells found in stationary cultures. In repeated passages in which the cells were plated at low density, they were amplified about 109-fold in 6 wk. The cells retained their ability to generate single-cell derived colonies and therefore apparently retained their multipotentiality for differentiation.

1,066 citations


Authors

Showing all 26976 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Peter Libby211932182724
Virginia M.-Y. Lee194993148820
Yury Gogotsi171956144520
Dennis R. Burton16468390959
M.-Marsel Mesulam15055890772
Edward G. Lakatta14685888637
Gordon T. Richards144613110666
David Price138168793535
Joseph Sodroski13854277070
Hannu Kurki-Suonio13843399607
Jun Lu135152699767
Stephen F. Badylak13353057083
Michael E. Thase13192375995
Edna B. Foa12958873034
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022382
20212,354
20202,344
20192,235
20182,165