scispace - formally typeset
Search or ask a question
Institution

Drexel University

EducationPhiladelphia, Pennsylvania, United States
About: Drexel University is a education organization based out in Philadelphia, Pennsylvania, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 26770 authors who have published 51438 publications receiving 1949443 citations. The organization is also known as: Drexel & Drexel Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The clinical features and basic processes underlying renal injury related to the use of common drugs, including microangiopathy, Fanconi syndrome, acute tubular necrosis, acute interstitial nephritis, nephrotic syndrome and chronic renal failure are reviewed.
Abstract: If detected early, damage to the kidneys caused by medications can be reversed in most instances. Physician awareness of which drugs have pathogenic potential is therefore essential. This article synthesizes current knowledge of the mechanisms by which commonly used drugs induce renal injury. Comprehensive summary tables that present the drug types associated with each mechanism, clinical findings and recommended management strategies are included. Renal dysfunction and injury secondary to medications are common, and can present as subtle injury and/or overt renal failure. Some drugs perturb renal perfusion and induce loss of filtration capacity. Others directly injure vascular, tubular, glomerular and interstitial cells, such that specific loss of renal function leads to clinical findings, including microangiopathy, Fanconi syndrome, acute tubular necrosis, acute interstitial nephritis, nephrotic syndrome, obstruction, nephrogenic diabetes insipidus, electrolyte abnormalities and chronic renal failure. Understanding the mechanisms involved, and recognizing the clinical presentations of renal dysfunction arising from use of commonly prescribed medications, are important if injury is to be detected early and prevented. This article reviews the clinical features and basic processes underlying renal injury related to the use of common drugs.

298 citations

Journal ArticleDOI
TL;DR: Computational and information aspects of design of materials with hierarchical microstructures are explored and key underdeveloped elements essential to supporting ICME are identified.
Abstract: Designing materials for targeted performance requirements as required in Integrated Computational Materials Engineering (ICME) demands a combined strategy of bottom-up and top-down modeling and simulation which treats various levels of hierarchical material structure as a mathematical representation, with infusion of systems engineering and informatics to deal with differing model degrees of freedom and uncertainty. Moreover, with time, the classical materials selection approach is becoming generalized to address concurrent design of microstructure or mesostructure to satisfy product-level performance requirements. Computational materials science and multiscale mechanics models play key roles in evaluating performance metrics necessary to support materials design. The interplay of systems-based design of materials with multiscale modeling methodologies is at the core of materials design. In high performance alloys and composite materials, maximum performance is often achieved within a relatively narrow window of process path and resulting microstructures. Much of the attention to ICME in the materials community has focused on the role of generating and representing data, including methods for characterization and digital representation of microstructure, as well as databases and model integration. On the other hand, the computational mechanics of materials and multidisciplinary design optimization communities are grappling with many fundamental issues related to stochasticity of processes and uncertainty of data, models, and multiscale modeling chains in decision-based design. This paper explores computational and information aspects of design of materials with hierarchical microstructures and identifies key underdeveloped elements essential to supporting ICME. One of the messages of this overview paper is that ICME is not simply an assemblage of existing tools, for such tools do not have natural interfaces to material structure nor are they framed in a way that quantifies sources of uncertainty and manages uncertainty in representing physical phenomena to support decision-based design.

297 citations

Journal ArticleDOI
19 Feb 2016-eLife
TL;DR: It is proposed that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation.
Abstract: Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation.

297 citations

Journal ArticleDOI
Saif Khalil1, Wei Sun1
TL;DR: The potential use of accurate cell placement for engineering complex tissue regeneration using computer-aided design systems is exhibited and the bioprinting process is validated for the freeform fabrication of porous alginate scaffolds with encapsulated endothelial cells.
Abstract: Advanced solid freeform fabrication (SFF) techniques have been an interest for constructing tissue engineered polymeric scaffolds because of its repeatability and capability of high accuracy in fabrication resolution at the scaffold macro- and microscales. Among many important scaffold applications, hydrogel scaffolds have been utilized in tissue engineering as a technique to confide the desired proliferation of seeded cells in vitro and in vivo into its architecturally porous three-dimensional structures. Such fabrication techniques not only enable the reconstruction of scaffolds with accurate anatomical architectures but also enable the ability to incorporate bioactive species such as growth factors, proteins, and living cells. This paper presents a bioprinting system designed for the freeform fabrication of porous alginate scaffolds with encapsulated endothelial cells. The bioprinting fabrication system includes a multinozzle deposition system that utilizes SFF techniques and a computer-aided modeling system capable of creating heterogeneous tissue scaffolds. The manufacturing process is biologically compatible and is capable of functioning at room temperature and relatively low pressures to reduce the fluidic shear forces that could deteriorate biologically active species. The deposition system resolution is 10 microm in the three orthogonal directions XYZ and has minimum velocity of 100 microm/s. The ideal concentrations of sodium alginate and calcium chloride were investigated to determine a viable bioprinting process. The results indicated that the suitable fabrication parameters were 1.5% (w/v) sodium alginate and 0.5% (w/v) calcium chloride. Degradation studies via mechanical testing showed a decrease in the elastic modulus by 35% after 3 weeks. Cell viability studies were conducted on the cell encapsulated scaffolds for validating the bioprinting process and determining cell viability of 83%. This work exhibits the potential use of accurate cell placement for engineering complex tissue regeneration using computer-aided design systems.

297 citations

Journal ArticleDOI
TL;DR: The findings indicate that involvement serves as a complex moderator role in the pattern of relationships of work experiences, and job characteristics with career expectations and career outcomes.
Abstract: This study assesses the job involvement of 464 professionals and managers in the information systems (IS) field and investigates the role of involvement in influencing the quality of work life. Results show significant variation in the level of job involvement displayed by IS employees and differential patterns of relationships among the work variables for IS personnel with low, moderate, and high levels of job involvement. The findings indicate that involvement serves as a complex moderator role in the pattern of relationships of work experiences, and job characteristics with career expectations and career outcomes. It has both linear and non-linear relationships with sevearl of the study variables. While in some cases, high levels of job involvement tend to enhance the beneficial effects of work experiences on the quality of work life, in others such involvement tends to heighten the negative effects of role stressors. Implications of the findings and directions for future research are discussed.

297 citations


Authors

Showing all 26976 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Peter Libby211932182724
Virginia M.-Y. Lee194993148820
Yury Gogotsi171956144520
Dennis R. Burton16468390959
M.-Marsel Mesulam15055890772
Edward G. Lakatta14685888637
Gordon T. Richards144613110666
David Price138168793535
Joseph Sodroski13854277070
Hannu Kurki-Suonio13843399607
Jun Lu135152699767
Stephen F. Badylak13353057083
Michael E. Thase13192375995
Edna B. Foa12958873034
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022382
20212,354
20202,344
20192,235
20182,165