scispace - formally typeset
Search or ask a question
Institution

Drexel University

EducationPhiladelphia, Pennsylvania, United States
About: Drexel University is a education organization based out in Philadelphia, Pennsylvania, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 26770 authors who have published 51438 publications receiving 1949443 citations. The organization is also known as: Drexel & Drexel Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors study the growth rate of stars via stellar collisions in dense star clusters, calibrating their analytic calculations with direct N-body simulations of up to 65,536 stars, performed on the GRAPE family of specialpurpose computers.
Abstract: We study the growth rate of stars via stellar collisions in dense star clusters, calibrating our analytic calculations with direct N-body simulations of up to 65,536 stars, performed on the GRAPE family of special-purpose computers. We find that star clusters with initial half-mass relaxation times 25 Myr are dominated by stellar collisions, the first collisions occurring at or near the point of core collapse, which is driven by the segregation of the most massive stars to the cluster center, where they end up in hard binaries. The majority of collisions occur with the same star, resulting in the runaway growth of a supermassive object. This object can grow up to ~0.1% of the mass of the entire star cluster and could manifest itself as an intermediate-mass black hole (IMBH). The phase of runaway growth lasts until mass loss by stellar evolution arrests core collapse. Star clusters older than about 5 Myr and with present-day half-mass relaxation times 100 Myr are expected to contain an IMBH.

610 citations

Journal ArticleDOI
TL;DR: The current document is an update of an earlier version of single photon emission tomography guidelines that was developed by the American Society of Nuclear Cardiology, and should not be used in clinical studies until they have been reviewed and approved by qualified physicians and technologists from their own particular institutions.

610 citations

Journal ArticleDOI
Mark Chaisson1, Mark Chaisson2, Ashley D. Sanders, Xuefang Zhao3, Xuefang Zhao4, Ankit Malhotra, David Porubsky5, David Porubsky6, Tobias Rausch, Eugene J. Gardner7, Oscar L. Rodriguez8, Li Guo9, Ryan L. Collins4, Xian Fan10, Jia Wen11, Robert E. Handsaker4, Robert E. Handsaker12, Susan Fairley13, Zev N. Kronenberg1, Xiangmeng Kong14, Fereydoun Hormozdiari15, Dillon Lee16, Aaron M. Wenger17, Alex Hastie, Danny Antaki18, Thomas Anantharaman, Peter A. Audano1, Harrison Brand4, Stuart Cantsilieris1, Han Cao, Eliza Cerveira, Chong Chen10, Xintong Chen7, Chen-Shan Chin17, Zechen Chong10, Nelson T. Chuang7, Christine C. Lambert17, Deanna M. Church, Laura Clarke13, Andrew Farrell16, Joey Flores19, Timur R. Galeev14, David U. Gorkin20, David U. Gorkin18, Madhusudan Gujral18, Victor Guryev6, William Haynes Heaton, Jonas Korlach17, Sushant Kumar14, Jee Young Kwon21, Ernest T. Lam, Jong Eun Lee, Joyce V. Lee, Wan-Ping Lee, Sau Peng Lee, Shantao Li14, Patrick Marks, Karine A. Viaud-Martinez19, Sascha Meiers, Katherine M. Munson1, Fabio C. P. Navarro14, Bradley J. Nelson1, Conor Nodzak11, Amina Noor18, Sofia Kyriazopoulou-Panagiotopoulou, Andy Wing Chun Pang, Yunjiang Qiu20, Yunjiang Qiu18, Gabriel Rosanio18, Mallory Ryan, Adrian M. Stütz, Diana C.J. Spierings6, Alistair Ward16, Anne Marie E. Welch1, Ming Xiao22, Wei Xu, Chengsheng Zhang, Qihui Zhu, Xiangqun Zheng-Bradley13, Ernesto Lowy13, Sergei Yakneen, Steven A. McCarroll4, Steven A. McCarroll12, Goo Jun23, Li Ding24, Chong-Lek Koh25, Bing Ren18, Bing Ren20, Paul Flicek13, Ken Chen10, Mark Gerstein, Pui-Yan Kwok26, Peter M. Lansdorp27, Peter M. Lansdorp6, Peter M. Lansdorp28, Gabor T. Marth16, Jonathan Sebat18, Xinghua Shi11, Ali Bashir8, Kai Ye9, Scott E. Devine7, Michael E. Talkowski4, Michael E. Talkowski12, Ryan E. Mills3, Tobias Marschall5, Jan O. Korbel13, Evan E. Eichler1, Charles Lee21 
TL;DR: A suite of long-read, short- read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms are applied to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner.
Abstract: The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.

606 citations

Journal ArticleDOI
TL;DR: Two-dimensional transition metal carbides and nitrides (MXenes) have emerged as highly conductive and stable materials, of promise for electronic applications, and in situ electric biasing and transmission electron microscopy are used to investigate the effect of surface termination and intercalation on electronic properties.
Abstract: MXenes are an emerging family of highly-conductive 2D materials which have demonstrated state-of-the-art performance in electromagnetic interference shielding, chemical sensing, and energy storage. To further improve performance, there is a need to increase MXenes' electronic conductivity. Tailoring the MXene surface chemistry could achieve this goal, as density functional theory predicts that surface terminations strongly influence MXenes' Fermi level density of states and thereby MXenes' electronic conductivity. Here, we directly correlate MXene surface de-functionalization with increased electronic conductivity through in situ vacuum annealing, electrical biasing, and spectroscopic analysis within the transmission electron microscope. Furthermore, we show that intercalation can induce transitions between metallic and semiconductor-like transport (transitions from a positive to negative temperature-dependence of resistance) through inter-flake effects. These findings lay the groundwork for intercalation- and termination-engineered MXenes, which promise improved electronic conductivity and could lead to the realization of semiconducting, magnetic, and topologically insulating MXenes.

605 citations

Journal ArticleDOI
01 Sep 2006
TL;DR: This paper presents ontology mapping categories, describes the characteristics of each category, compares these characteristics, and surveys tools, systems, and related work based on each category ofOntology mapping.
Abstract: Ontology is increasingly seen as a key factor for enabling interoperability across heterogeneous systems and semantic web applications. Ontology mapping is required for combining distributed and heterogeneous ontologies. Developing such ontology mapping has been a core issue of recent ontology research. This paper presents ontology mapping categories, describes the characteristics of each category, compares these characteristics, and surveys tools, systems, and related work based on each category of ontology mapping. We believe this paper provides readers with a comprehensive understanding of ontology mapping and points to various research topics about the specific roles of ontology mapping.

605 citations


Authors

Showing all 26976 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Peter Libby211932182724
Virginia M.-Y. Lee194993148820
Yury Gogotsi171956144520
Dennis R. Burton16468390959
M.-Marsel Mesulam15055890772
Edward G. Lakatta14685888637
Gordon T. Richards144613110666
David Price138168793535
Joseph Sodroski13854277070
Hannu Kurki-Suonio13843399607
Jun Lu135152699767
Stephen F. Badylak13353057083
Michael E. Thase13192375995
Edna B. Foa12958873034
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022382
20212,354
20202,344
20192,235
20182,165