scispace - formally typeset
Search or ask a question
Institution

Henan Normal University

EducationXinxiang, China
About: Henan Normal University is a education organization based out in Xinxiang, China. It is known for research contribution in the topics: Catalysis & Ionic liquid. The organization has 10863 authors who have published 11077 publications receiving 166773 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The S@Ni/Fe LDH cathode has successfully solved the main issues related to sulfur electrodes, and it exhibits significantly improved electrochemical performances with prolonged life over 1000 cycles and excellent rate properties.
Abstract: We have designed and synthesized novel hollow Ni/Fe layered double hydroxide (LDH) polyhedrons as an advanced sulfur host for enhancing the performance of lithium-sulfur (Li-S) batteries. The Ni/Fe LDH host shows multiple advantages. First, the Ni/Fe LDH shells can provide sufficient sulfiphilic sites for chemically bonding with polysulfides. Second, the hollow architecture can provide sufficient inner space for both loading a large amount of sulfur and accommodating its large volumetric expansion. Moreover, once the active material is confined within the host, the shells could easily restrict the outward diffusion of polysulfides, guaranteeing prolonged cycle life even with high sulfur loading. As a result, the S@Ni/Fe LDH cathode has successfully solved the main issues related to sulfur electrodes, and it exhibits significantly improved electrochemical performances with prolonged life over 1000 cycles and excellent rate properties.

225 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze the recent experimental evidence for an excess of τ -lepton production in several exclusive semileptonic B-meson decays in the context of two-Higgs-doublet models.
Abstract: We analyze the recent experimental evidence for an excess of τ -lepton production in several exclusive semileptonic B-meson decays in the context of two-Higgs-doublet models. These decay modes are sensitive to the exchange of charged scalars and constrain strongly their Yukawa interactions. While the usual Type-II scenario cannot accommodate the recent BaBar data, this is possible within more general models in which the charged-scalar couplings to up-type quarks are not as suppressed. Both the B → D (*) τν τ and the B → τν τ data can be fitted within the framework of the Aligned Two-Higgs-Doublet Model, but the resulting parameter ranges are in conflict with the constraints from leptonic charm decays. This could indicate a departure from the family universality of the Yukawa couplings, beyond their characteristic fermion mass dependence. We discuss several new observables that are sensitive to a hypothetical charged-scalar contribution, demonstrating that they are well suited to distinguish between different scenarios of new physics in the scalar sector, and also between this group and models with different Dirac structures; their experimental study would therefore shed light on the relevance of scalar exchanges in semileptonic $ b\to c{\tau^{-}}{{\overline{ u}}_{\tau }} $ transitions.

224 citations

Journal ArticleDOI
TL;DR: In this article, a new nonprecious-metal bifunctional catalyst of urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene nanosheets was designed and synthesized by simply tailoring the structure and electronic arrangement, which endow the as-prepared catalyst with excellent electroactivity and long-term durability toward ORR and OER.
Abstract: Rechargeable zinc–air batteries (ZnABs) are attracting great interest due to their high theoretical specific energy, safety, and economic viability. However, their performance and large-scale practical applications are largely limited by poor durability and high overpotential on the air-cathode due to the slow kinetics of the oxygen reduction and evolution reactions (ORR/OER). Therefore, it is highly desired to exploit an ideal bifunctional catalyst to endow the obtained ZnABs with excellent ORR/OER catalytic performances. Herein, a new nonprecious-metal bifunctional catalyst of urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene nanosheets (S-GNS/NiCo2S4) is controllably designed and synthesized by simply tailoring the structure and electronic arrangement, which endow the as-prepared catalyst with excellent electroactivity and long-term durability toward ORR and OER. Importantly, ZnABs constructed by this outstanding catalyst exhibit high power density, small charge/discharge voltage gap, and excellent cycle stability, notably outperforming the more costly commercial Pt/C + Ir/C mixture catalyst. These excellent electrocatalytic performances together with the simplicity of the synthetic method, make the urchin-like NiCo2S4 microsphere/S-GNS hybrid nanostructure exhibit great promise as a superior air-cathode catalyst for high-performance rechargeable ZnABs.

222 citations

Journal ArticleDOI
TL;DR: In this paper, the first-cycle coulombic efficiency strongly depends on the sodium content in NaxFeFeFe(CN)6, and first-principle calculations demonstrate that sodium cations in the large cavities of PBs have a priority to occupy the 8c site, while in the Na-rich samples, Na+ ions can be pushed into other 24d site.

221 citations

Journal ArticleDOI
TL;DR: In this article, a series of nitrogen and oxygen enriched porous carbons are prepared from poly-N-phenylethanolamine (PNPEA) and polyaniline (PANI) conducting polymers through pyrolysis, chemical activation, and oxidation processes.
Abstract: A series of nitrogen and oxygen enriched porous carbons are prepared from poly-N-phenylethanolamine (PNPEA) and polyaniline (PANI) conducting polymers through pyrolysis, chemical activation, and oxidation processes. Ar or N2-adsorption, Fourier transform infrared, and X-ray photoelectron spectroscopy are used to characterize the surface areas, pore volumes, surface chemical compositions, and oxygen and nitrogen content. Mikhail and Brunauer micropore analytical method (MP method) is successfully used to analyze the micropore size distribution of the samples. The electrochemical behavior of the samples is studied in two- and three-electrode cells. The contribution of pseudocapacitance is confirmed by cyclic voltammetry and galvanostatic tests performed in acidic (H2SO4) and basic (KOH) media. The potential drop and the equivalent series resistance value certify that the samples with wide micropore size distribution possess low interface resistances. A sample with a Brunauer–Emmett–Teller (BET) surface area...

219 citations


Authors

Showing all 10953 results

NameH-indexPapersCitations
Hua Zhang1631503116769
Jie Wu112153756708
Peng Wang108167254529
Lei Liu98204151163
Lixia Zhang9335147817
Zhongwei Chen9251133700
Wei Chen9093835799
Zhiguo Ding8881735162
Xiaolong Wang8196631455
Junhua Li7748021626
Jiujun Zhang7627639624
Lei Liao7527618815
Peng Xu75115125005
Wei Wang75116723558
Tony D. James7343521605
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

93% related

Xiamen University
54.4K papers, 1M citations

90% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Nanjing University
105.5K papers, 2.2M citations

89% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022173
20211,281
20201,042
2019987
2018818