scispace - formally typeset
Search or ask a question
Institution

Johannes Kepler University of Linz

EducationLinz, Oberösterreich, Austria
About: Johannes Kepler University of Linz is a education organization based out in Linz, Oberösterreich, Austria. It is known for research contribution in the topics: Computer science & Thin film. The organization has 6605 authors who have published 19243 publications receiving 385667 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The tuning of lateral and vertical correlations in self-organized PbSe/Pb 1-xEu xTe quantum dot superlattices by changes in the spacer thicknesses is demonstrated and shown to be due to finite size effects in the dot-dot interactions.
Abstract: The tuning of lateral and vertical correlations in self-organized PbSe/Pb 1-xEu xTe quantum dot superlattices by changes in the spacer thicknesses is demonstrated and shown to be due to finite size effects in the dot-dot interactions As a consequence, different dot arrangements such as vertically aligned dot columns or fcc stacking are obtained for a single material system without changes in growth conditions The different dot superstructures are shown to exhibit a different scaling behavior of the lateral versus vertical dot separation, as well as a different evolution of dot sizes and shapes

133 citations

Proceedings ArticleDOI
22 Oct 2012
TL;DR: This work presents a novel approach to implementing AST interpreters in which the AST is modified during interpretation to incorporate type feedback, which is a general and powerful mechanism to optimize many constructs common in dynamic programming languages.
Abstract: An abstract syntax tree (AST) interpreter is a simple and natural way to implement a programming language. However, it is also considered the slowest approach because of the high overhead of virtual method dispatch. Language implementers therefore define bytecodes to speed up interpretation, at the cost of introducing inflexible and hard to maintain bytecode formats. We present a novel approach to implementing AST interpreters in which the AST is modified during interpretation to incorporate type feedback. This tree rewriting is a general and powerful mechanism to optimize many constructs common in dynamic programming languages. Our system is implemented in Java and uses the static typing and primitive data types of Java elegantly to avoid the cost of boxed representations of primitive values in dynamic programming languages.

133 citations

Journal ArticleDOI
TL;DR: It is concluded that the fuzzy neural network models and their derivations are efficient in constructing a system with a high degree of accuracy and an appropriate level of interpretability working in a wide range of areas of economics and science.

133 citations

Journal ArticleDOI
TL;DR: It is concluded that a range of pragmatic options for enabling user involvement in ongoing computations exists on both the visualization and algorithm side and should be used.
Abstract: An increasing number of interactive visualization tools stress the integration with computational software like MATLAB and R to access a variety of proven algorithms. In many cases, however, the algorithms are used as black boxes that run to completion in isolation which contradicts the needs of interactive data exploration. This paper structures, formalizes, and discusses possibilities to enable user involvement in ongoing computations. Based on a structured characterization of needs regarding intermediate feedback and control, the main contribution is a formalization and comparison of strategies for achieving user involvement for algorithms with different characteristics. In the context of integration, we describe considerations for implementing these strategies either as part of the visualization tool or as part of the algorithm, and we identify requirements and guidelines for the design of algorithmic APIs. To assess the practical applicability, we provide a survey of frequently used algorithm implementations within R regarding the fulfillment of these guidelines. While echoing previous calls for analysis modules which support data exploration more directly, we conclude that a range of pragmatic options for enabling user involvement in ongoing computations exists on both the visualization and algorithm side and should be used.

133 citations

Journal ArticleDOI
TL;DR: The results indicate that specific voltage sensors of the sodium channel play unique roles in gating, and suggest that movement of one voltage sensor, the S4 segment of domain 4, is at least a two-step process, each step coupled to a different gate.
Abstract: Voltage-gated ion channels have at least two classes of moving parts, voltage sensors that respond to changes in the transmembrane potential and gates that create or deny permeant ions access to the conduction pathway. To explore the coupling between voltage sensors and gates, we have systematically immobilized each using a bifunctional photoactivatable cross-linker, benzophenone-4-carboxamidocysteine methanethiosulfonate, that can be tethered to cysteines introduced into the channel protein by mutagenesis. To validate the method, we first tested it on the inactivation gate of the sodium channel. The benzophenone-labeled inactivation gate of the sodium channel can be trapped selectively either in an open or closed state by ultraviolet irradiation at either a hyperpolarized or depolarized voltage, respectively. To verify that ultraviolet light can immobilize S4 segments, we examined its relative effects on ionic and gating currents in Shaker potassium channels, labeled at residue 359 at the extracellular end of the S4 segment. As predicted by the tetrameric stoichiometry of these potassium channels, ultraviolet irradiation reduces ionic current by approximately the fourth power of the gating current reduction, suggesting little cooperativity between the movements of individual S4 segments. Photocross-linking occurs preferably at hyperpolarized voltages after labeling residue 359, suggesting that depolarization moves the benzophenone adduct out of a restricted environment. Immobilization of the S4 segment of the second domain of sodium channels prevents channels from opening. By contrast, photocross-linking the S4 segment of the fourth domain of the sodium channel has effects on both activation and inactivation. Our results indicate that specific voltage sensors of the sodium channel play unique roles in gating, and suggest that movement of one voltage sensor, the S4 segment of domain 4, is at least a two-step process, each step coupled to a different gate.

133 citations


Authors

Showing all 6718 results

NameH-indexPapersCitations
Wolfgang Wagner1562342123391
A. Paul Alivisatos146470101741
Klaus-Robert Müller12976479391
Christoph J. Brabec12089668188
Andreas Heinz108107845002
Niyazi Serdar Sariciftci9959154055
Lars Samuelson9685036931
Peter J. Oefner9034830729
Dmitri V. Talapin9030339572
Tomás Torres8862528223
Ramesh Raskar8667030675
Siegfried Bauer8442226759
Alexander Eychmüller8244423688
Friedrich Schneider8255427383
Maksym V. Kovalenko8136034805
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

RWTH Aachen University
96.2K papers, 2.5M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
202354
2022187
20211,404
20201,412
20191,365