scispace - formally typeset
Search or ask a question
Institution

Johannes Kepler University of Linz

EducationLinz, Oberösterreich, Austria
About: Johannes Kepler University of Linz is a education organization based out in Linz, Oberösterreich, Austria. It is known for research contribution in the topics: Computer science & Thin film. The organization has 6605 authors who have published 19243 publications receiving 385667 citations.


Papers
More filters
Reference EntryDOI
15 Jan 2002
TL;DR: In this article, the authors present a survey of the state-of-the-art techniques for X-ray image and spectrum analysis in the field of electron detection and analysis.
Abstract: The article contains sections titled: 1. Introduction 2. Electron Detection 2.1. X-Ray Photoelectron Spectroscopy (XPS) 2.1.1. Principles 2.1.2. Instrumentation 2.1.2.1. Vacuum Requirements 2.1.2.2. X-Ray Sources 2.1.2.3. Synchrotron Radiation 2.1.2.4. Electron Energy Analyzers 2.1.2.5. Spatial Resolution 2.1.3. Spectral Information and Chemical Shifts 2.1.4. Quantification, Depth Profiling, and Imaging 2.1.4.1. Quantification 2.1.4.2. Depth Profiling 2.1.4.3. Imaging 2.1.5. The Auger Parameter 2.1.6. Applications 2.1.6.1. Catalysis 2.1.6.2. Polymers 2.1.6.3. Corrosion and Passivation 2.1.6.4. Adhesion 2.1.6.5. Superconductors 2.1.6.6. Interfaces 2.2. Ultraviolet Photoelectron Spectroscopy (UPS) 2.3. Auger Electron Spectroscopy (AES) 2.3.1. Principles 2.3.2. Instrumentation 2.3.2.1. Vacuum Requirements 2.3.2.2. Electron Sources 2.3.2.3. Electron Energy Analyzers 2.3.3. Spectral Information 2.3.4. Quantification and Depth Profiling 2.3.4.1. Quantification 2.3.4.2. Depth Profiling 2.3.5. Applications 2.3.5.1. Grain Boundary Segregation 2.3.5.2. Semiconductor Technology 2.3.5.3. Thin Films and Interfaces 2.3.5.4. Surface Segregation 2.4. Scanning Auger Microscopy (SAM) 2.5. Other Electron-Detecting Techniques 2.5.1. Auger Electron Appearance Potential Spectroscopy (AEAPS) 2.5.2. Electron Energy Loss Methods 2.5.2.1. Electron Energy Loss Spectroscopy (EELS) and Core-Electron Energy Loss Spectroscopy (CEELS) 2.5.2.2. High-Resolution Electron Energy Loss Spectroscopy (HREELS) 2.5.3. Diffraction Methods 2.5.3.1. Low-Energy Electron Diffraction (LEED) 2.5.3.2. Reflection High-Energy Electron Diffraction (RHEED) 2.5.4. Ion-Excitation Method 2.5.4.1. Ion (Excited) Auger Electron Spectroscopy (IAES) 2.5.4.2. Ion-Neutralization Spectroscopy (INS) 2.5.4.3. Metastable Quenching Spectroscopy (MQS) 2.5.5. Inelastic Electron Tunneling Spectroscopy (IETS) 3. Ion Detection 3.1. Secondary Ion Mass Spectrometry 3.1.1. Static Secondary Ion Mass Spectrometry (SSIMS) 3.1.1.1. Principles 3.1.1.2. Instrumentation 3.1.1.2.1. Ion Sources 3.1.1.2.2. Mass Analyzers 3.1.1.3. Quantification 3.1.1.4. Spectral Information 3.1.1.5. Applications 3.1.1.5.1. Oxide Films 3.1.1.5.2. Interfaces 3.1.1.5.3. Polymers 3.1.1.5.4. Biosensors 3.1.1.5.5. Surface Reactions 3.1.1.5.6. Imaging 3.1.1.5.7. Ultrashallow Depth Profiling 3.1.2. Dynamic SIMS 3.1.2.1. Principles 3.1.2.2. Instrumentation 3.1.2.2.1. Ion Sources 3.1.2.2.2. Mass Analyzers 3.1.2.2.3. Detectors 3.1.2.3. Spectral Information 3.1.2.4. Quantification 3.1.2.5. Mass Spectra 3.1.2.6. Depth Profiles 3.1.2.7. Imaging 3.1.2.8. Applications 3.1.2.8.1. Implantation Profiles 3.1.2.8.2. Layer Analysis 3.1.2.8.3. 3D Bulk Element Distribution 3.2. Secondary Neutral Mass Spectrometry (SNMS) 3.2.1. General Principles 3.2.2. Electron-Beam and HF-Plasma SNMS 3.2.2.1. Principles 3.2.2.2. Instrumentation 3.2.2.3. Spectral Information 3.2.2.4. Quantification 3.2.2.5. Element Depth Profiling 3.2.2.6. Applications 3.2.3. Laser-SNMS 3.2.3.1. Principles 3.2.3.1.1. Nonresonant Laser-SNMS 3.2.3.1.2. Resonant Laser-SNMS 3.2.3.1.3. Experimental Setup 3.2.3.1.4. Ionization Schemes 3.2.3.2. Instrumentation 3.2.3.3. Spectral Information 3.2.3.4. Quantification 3.2.3.5. Applications 3.2.3.5.1. Nonresonant Laser-SNMS 3.2.3.5.2. Resonant Laser-SNMS 3.3. Ion-Scattering Techniques 3.3.1. Rutherford Backscattering Spectroscopy (RBS) 3.3.1.1. Principles 3.3.1.2. Instrumentation 3.3.1.3. Spectral Information 3.3.1.4. Quantification 3.3.1.5. Applications 3.3.2. Low-Energy Ion Scattering (LEIS) 3.3.2.1. Principles 3.3.2.2. Instrumentation 3.3.2.3. Information 3.3.2.4. Quantification 3.3.2.5. Applications 3.4. Other Ion-Detecting Techniques 3.4.1. Desorption Methods 3.4.1.1. Electron-Stimulated Desorption (ESD) and Electron-Stimulated Desorption Ion Angular Distribution (ESDIAD) 3.4.1.2. Thermal Desorption Spectroscopy (TDS) 3.4.2. Glow Discharge Mass Spectroscopy (GDMS) 3.4.3. Fast Atom Bombardment Mass Spectroscopy (FABMS) 3.4.4. Atom Probe Microscopy 3.4.4.1. Atom Probe Field-Ion Microscopy (APFIM) 3.4.4.2. Position-Sensitive Atom Probe (POSAP) 4. Photon Detection 4.1. Total-Reflection X-ray Fluorescence Analysis (TXRF) 4.1.1. Principles 4.1.2. Instrumentation 4.1.3. Spectral Information 4.1.4. Quantification 4.1.5. Applications 4.1.5.1. Particulate and Film-Type Surface Contamination 4.1.5.2. Semiconductors 4.1.5.2.1. Depth Profiling by TXRF and Multilayer Structures 4.1.5.2.2. Vapor Phase Decomposition (VPD) and Droplet Collection 4.2. Glow Discharge Optical Emission Spectroscopy (GD-OES) 4.2.1. Principles 4.2.2. Instrumentation 4.2.3. Spectral Information 4.2.4. Quantification 4.2.5. Depth Profiling 4.2.6. Applications 4.3. Surface-Sensitive IR and Raman Spectroscopy; Ellipsometry 4.3.1. Reflection - Absorption IR Spectroscopy (RAIRS) 4.3.1.1. Principles 4.3.1.2. Instrumentation and Applications 4.3.2. Surface Raman Spectroscopy 4.3.2.1. Principles 4.3.2.2. Surface-Enhanced Raman Scattering (SERS) 4.3.2.2.1. Instrumentation 4.3.2.2.2. Spectral Information 4.3.2.2.3. Applications 4.3.2.3. Nonlinear Optical Spectroscopy 4.3.3. UV - VIS - IR Ellipsometry (ELL) 4.3.3.1. Principles 4.3.3.2. Instrumentation 4.3.3.3. Applications 4.4. Other Photon-Detecting Techniques 4.4.1. Appearance-Potential Methods 4.4.1.1. Soft X-Ray Appearance-Potential Spectroscopy (SXAPS) 4.4.1.2. Disappearance-Potential Spectroscopy (DAPS) 4.4.2. Inverse Photoemission Spectroscopy (IPES) and Bremsstrahlung Isochromat Spectroscopy (BIS) 4.4.3. Ion-Beam Spectrochemical Analysis (IBSCA) 5. Scanning Probe Microscopy 5.1. Atomic Force Microscopy (AFM) 5.1.1. Principles 5.1.2. Instrumentation 5.1.3. Applications 5.2. Scanning Tunneling Microscopy (STM) 5.2.1. Principles 5.2.2. Instrumentation 5.2.3. Lateral and Spectroscopic Information 5.2.4. Applications 6. Summary and Comparison of Techniques 7. Surface Analytical Equipment Suppliers 8. Acknowledgement

117 citations

Journal ArticleDOI
TL;DR: A method for the identification of DEM simulation parameters that uses artificial neural networks to link macroscopic experimental results to microscopic numerical parameters and which can be used generically to identify DEM material parameters.

116 citations

Journal ArticleDOI
TL;DR: It is shown that the support plays a fundamental role in determining Ga nanoparticle phases, with the driving forces for the nucleation of the γ-phase being the Laplace pressure in the nanoparticles and the epitaxial relationship of this phase to the substrate.
Abstract: A real-time investigation shows that Ga nanoparticles in the solid γ-phase coexist with liquid Ga at a broad range of temperatures, as a result of nanoscale confinement, Laplace pressure and epitaxial matching with the substrate.

116 citations

Journal ArticleDOI
TL;DR: It is shown that the performance of methacrylate-based porous polymer monoliths is strongly affected by the retention factor of the analytes separated, and the actual nature of the partition and adsorption of the small analyte molecules between mobile and stationary polymer phases are most crucial for their performance.

116 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the size of two different nanocrystals (NCs) on the performance and key parameters of the devices are discussed together with peculiar features of device functioning.
Abstract: We report on the fabrication of efficient PbS solar cells, showing power conversion efficiencies approaching 4% and fill factors of 60% under AM1.5 illumination. The effect of the size of two different nanocrystals (NCs) on the performance and key parameters of the devices are discussed together with peculiar features of device functioning. The results prove that the devices are not under space-charge limitation and the device performance is influenced by charge trapping which is dependent on the size of the NCs.

116 citations


Authors

Showing all 6718 results

NameH-indexPapersCitations
Wolfgang Wagner1562342123391
A. Paul Alivisatos146470101741
Klaus-Robert Müller12976479391
Christoph J. Brabec12089668188
Andreas Heinz108107845002
Niyazi Serdar Sariciftci9959154055
Lars Samuelson9685036931
Peter J. Oefner9034830729
Dmitri V. Talapin9030339572
Tomás Torres8862528223
Ramesh Raskar8667030675
Siegfried Bauer8442226759
Alexander Eychmüller8244423688
Friedrich Schneider8255427383
Maksym V. Kovalenko8136034805
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

RWTH Aachen University
96.2K papers, 2.5M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
202354
2022187
20211,404
20201,412
20191,365