scispace - formally typeset
Search or ask a question
Institution

Korea University

EducationSeoul, South Korea
About: Korea University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 39756 authors who have published 82424 publications receiving 1860927 citations. The organization is also known as: Bosung College & Bosung Professional College.
Topics: Population, Catalysis, Thin film, Cancer, Medicine


Papers
More filters
Journal ArticleDOI
14 Apr 2017-Science
TL;DR: Ultraviolet damage in perovskite photovoltaics induced by TiO2 in the electron-transporting layer can be avoided with La-doped BaSnO3, and a low-temperature colloidal method for depositing La- doped Ba SnO3 films as a replacement forTiO2 is reported to reduce such ultraviolet-induced damage.
Abstract: Perovskite solar cells (PSCs) exceeding a power conversion efficiency (PCE) of 20% have mainly been demonstrated by using mesoporous titanium dioxide (mp-TiO2) as an electron-transporting layer. However, TiO2 can reduce the stability of PSCs under illumination (including ultraviolet light). Lanthanum (La)–doped BaSnO3 (LBSO) perovskite would be an ideal replacement given its electron mobility and electronic structure, but LBSO cannot be synthesized as well-dispersible fine particles or crystallized below 500°C. We report a superoxide colloidal solution route for preparing a LBSO electrode under very mild conditions (below 300°C). The PSCs fabricated with LBSO and methylammonium lead iodide (MAPbI3) show a steady-state power conversion efficiency of 21.2%, versus 19.7% for a mp-TiO2 device. The LBSO-based PSCs could retain 93% of their initial performance after 1000 hours of full-Sun illumination.

1,016 citations

Journal ArticleDOI
TL;DR: A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode that contains an array of microscale pyramidal features and the electrode comprises a polymer composite.
Abstract: A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved.

1,008 citations

Journal ArticleDOI
TL;DR: Challenges Eun-Kyung Lim,†,‡,§ Taekhoon Kim, Soonmyung Paik, Seungjoo Haam, Yong-Min Huh,*,† and Kwangyeol Lee
Abstract: Challenges Eun-Kyung Lim,†,‡,§ Taekhoon Kim, Soonmyung Paik, Seungjoo Haam, Yong-Min Huh,*,† and Kwangyeol Lee* Department of Chemistry, Korea University, Seoul 136-701, Korea †Department of Radiology, Yonsei University, Seoul 120-752, Korea Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea Division of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea ‡BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1, Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea

998 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview on the recent development of solution processed organic, inorganic, and hybrid interfacial materials for bulk-heterojunction polymer solar cells.
Abstract: This article provides an overview on the recent development of solution processed organic, inorganic, and hybrid interfacial materials for bulk-heterojunction polymer solar cells. The introduction of proper interfacial materials to optimize the electronic and electrical properties between the interfaces of the light-harvesting active layer and the charge-collecting electrode has become an important criterion to improve the performance of polymer solar cells. The electronic processes at these interfaces play a critical role in determining the efficiency for photon-to-electricity conversion. An ideal interface requires the formation of Ohmic contact with minimum resistance and high charge selectivity to prevent charge carriers from reaching the opposite electrodes. For long-term stability of polymer solar cells, interfaces with matched surface energy are required to prevent interfacial dewetting and delamination. Several classes of interfacial materials including inorganic metal oxides, crosslinkable charge-transporting materials, conjugated polymer electrolytes, self-assembled functional molecules, and graphene-based materials are highlighted and the integration of these interfacial materials with new low bandgap polymers and fullerene derivatives as active materials in different device architectures is also discussed.

995 citations

Journal ArticleDOI
TL;DR: Multilayer MoS(2) phototransistors further exhibit high room temperature mobilities, near-ideal subthreshold swings, low operating gate biases, and negligible shifts in the threshold voltages during illumination.
Abstract: Phototransistors based on multilayer MoS(2) crystals are demonstrated with a wider spectral response and higher photoresponsivity than single-layer MoS(2) phototransistors. Multilayer MoS(2) phototransistors further exhibit high room temperature mobilities (>70 cm(2) V(-1) s(-1) ), near-ideal subthreshold swings (~70 mV decade(-1) ), low operating gate biases (<5 V), and negligible shifts in the threshold voltages during illumination.

993 citations


Authors

Showing all 40083 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Daniel S. Berman141136386136
Christof Koch141712105221
David Y. Graham138104780886
Suyong Choi135149597053
Rudolph E. Tanzi13563885376
Sung Keun Park133156796933
Tae Jeong Kim132142093959
Robert S. Brown130124365822
Mohammad Khaja Nazeeruddin12964685630
Klaus-Robert Müller12976479391
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Yonsei University
106.1K papers, 2.2M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

98% related

Seoul National University
138.7K papers, 3.7M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023121
2022611
20216,359
20206,208
20195,608
20185,088