scispace - formally typeset
Search or ask a question
Institution

Korea University

EducationSeoul, South Korea
About: Korea University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 39756 authors who have published 82424 publications receiving 1860927 citations. The organization is also known as: Bosung College & Bosung Professional College.
Topics: Population, Catalysis, Thin film, Cancer, Medicine


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors measured the DC conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(4-styrenesulfonate) (PSS) with various organic solvents.

992 citations

Journal ArticleDOI
TL;DR: The performance characteristics of mmen-Mg(2)(dobpdc) indicate it to be an exceptional new adsorbent for CO(2) capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.
Abstract: Two new metal–organic frameworks, M2(dobpdc) (M = Zn (1), Mg (2); dobpdc4– = 4,4′-dioxido-3,3′-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg2+ cations lining the 18.4-A-diameter channels of 2 were functionalized with N,N′-dimethylethylenediamine (mmen) to afford Mg2(dobpdc)(mmen)1.6(H2O)0.4 (mmen-Mg2(dobpdc)). This compound displays an exceptional capacity for CO2 adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO2 from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO2 capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg2(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO2 in simulated air at 25 °C and 2.52 mmol/g (9...

990 citations

Journal ArticleDOI
TL;DR: A novel coumarin-based fluorogenic probe bearing the 2-picolyl unit was developed as a fluorescent chemosensor with high selectivity and suitable affinity in biological systems toward Cu(2+) over other cations tested, and results indicate that 1 should be useful for the fluorescence microscopic imaging and the study on the biological functions of Cu( 2+.
Abstract: A novel coumarin-based fluorogenic probe bearing the 2-picolyl unit (1) was developed as a fluorescent chemosensor with high selectivity and suitable affinity in biological systems toward Cu2+ over other cations tested. The fluorescence on−off mechanism was studied by femtosecond time-resolved fluorescence (TRF) upconversion technique and ab initio calculations. The receptor can be applied to the monitoring of Cu2+ ion in aqueous solution with a pH span 4−10. To confirm the suitability of 1 for biological applications, we also employed it for the fluorescence detection of the changes of intracellular Cu2+ in cultured cells. The results indicate that 1 should be useful for the fluorescence microscopic imaging and the study on the biological functions of Cu2+.

976 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify potential global impacts of different negative emissions technologies on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application.
Abstract: To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.

974 citations

Journal ArticleDOI
TL;DR: A large-scale GWA analysis of well-characterized Korean population-based samples highlights previously unknown biological pathways and identifies two loci influencing bone mineral density at multiple sites.
Abstract: To identify genetic factors influencing quantitative traits of biomedical importance, we conducted a genome-wide association study in 8,842 samples from population-based cohorts recruited in Korea. For height and body mass index, most variants detected overlapped those reported in European samples. For the other traits examined, replication of promising GWAS signals in 7,861 independent Korean samples identified six previously unknown loci. For pulse rate, signals reaching genome-wide significance mapped to chromosomes 1q32 (rs12731740, P = 2.9 x 10(-9)) and 6q22 (rs12110693, P = 1.6 x 10(-9)), with the latter approximately 400 kb from the coding sequence of GJA1. For systolic blood pressure, the most compelling association involved chromosome 12q21 and variants near the ATP2B1 gene (rs17249754, P = 1.3 x 10(-7)). For waist-hip ratio, variants on chromosome 12q24 (rs2074356, P = 7.8 x 10(-12)) showed convincing associations, although no regional transcript has strong biological candidacy. Finally, we identified two loci influencing bone mineral density at multiple sites. On chromosome 7q31, rs7776725 (within the FAM3C gene) was associated with bone density at the radius (P = 1.0 x 10(-11)), tibia (P = 1.6 x 10(-6)) and heel (P = 1.9 x 10(-10)). On chromosome 7p14, rs1721400 (mapping close to SFRP4, a frizzled protein gene) showed consistent associations at the same three sites (P = 2.2 x 10(-3), P = 1.4 x 10(-7) and P = 6.0 x 10(-4), respectively). This large-scale GWA analysis of well-characterized Korean population-based samples highlights previously unknown biological pathways.

973 citations


Authors

Showing all 40083 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Daniel S. Berman141136386136
Christof Koch141712105221
David Y. Graham138104780886
Suyong Choi135149597053
Rudolph E. Tanzi13563885376
Sung Keun Park133156796933
Tae Jeong Kim132142093959
Robert S. Brown130124365822
Mohammad Khaja Nazeeruddin12964685630
Klaus-Robert Müller12976479391
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Yonsei University
106.1K papers, 2.2M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

98% related

Seoul National University
138.7K papers, 3.7M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023121
2022611
20216,359
20206,208
20195,608
20185,088