scispace - formally typeset
Search or ask a question

Showing papers by "Korea University published in 2018"


Journal ArticleDOI
TL;DR: In this paper, the authors assess the burden of 29 cancer groups over time to provide a framework for policy discussion, resource allocation, and research focus, and evaluate cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs) for 195 countries and territories by age and sex using the Global Burden of Disease study estimation methods.
Abstract: Importance The increasing burden due to cancer and other noncommunicable diseases poses a threat to human development, which has resulted in global political commitments reflected in the Sustainable Development Goals as well as the World Health Organization (WHO) Global Action Plan on Non-Communicable Diseases. To determine if these commitments have resulted in improved cancer control, quantitative assessments of the cancer burden are required. Objective To assess the burden for 29 cancer groups over time to provide a framework for policy discussion, resource allocation, and research focus. Evidence Review Cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs) were evaluated for 195 countries and territories by age and sex using the Global Burden of Disease study estimation methods. Levels and trends were analyzed over time, as well as by the Sociodemographic Index (SDI). Changes in incident cases were categorized by changes due to epidemiological vs demographic transition. Findings In 2016, there were 17.2 million cancer cases worldwide and 8.9 million deaths. Cancer cases increased by 28% between 2006 and 2016. The smallest increase was seen in high SDI countries. Globally, population aging contributed 17%; population growth, 12%; and changes in age-specific rates, −1% to this change. The most common incident cancer globally for men was prostate cancer (1.4 million cases). The leading cause of cancer deaths and DALYs was tracheal, bronchus, and lung cancer (1.2 million deaths and 25.4 million DALYs). For women, the most common incident cancer and the leading cause of cancer deaths and DALYs was breast cancer (1.7 million incident cases, 535 000 deaths, and 14.9 million DALYs). In 2016, cancer caused 213.2 million DALYs globally for both sexes combined. Between 2006 and 2016, the average annual age-standardized incidence rates for all cancers combined increased in 130 of 195 countries or territories, and the average annual age-standardized death rates decreased within that timeframe in 143 of 195 countries or territories. Conclusions and Relevance Large disparities exist between countries in cancer incidence, deaths, and associated disability. Scaling up cancer prevention and ensuring universal access to cancer care are required for health equity and to fulfill the global commitments for noncommunicable disease and cancer control.

4,621 citations


Journal ArticleDOI
Jeffrey D. Stanaway1, Ashkan Afshin1, Emmanuela Gakidou1, Stephen S Lim1  +1050 moreInstitutions (346)
TL;DR: This study estimated levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs) by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017 and explored the relationship between development and risk exposure.

2,910 citations


Proceedings ArticleDOI
18 Jun 2018
TL;DR: StarGAN as discussed by the authors proposes a unified model architecture to perform image-to-image translation for multiple domains using only a single model, which leads to superior quality of translated images compared to existing models as well as the capability of flexibly translating an input image to any desired target domain.
Abstract: Recent studies have shown remarkable success in image-to-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN's superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

2,479 citations


Journal ArticleDOI
TL;DR: The second part of the tutorial focuses on the recently proposed layer-wise relevance propagation (LRP) technique, for which the author provides theory, recommendations, and tricks, to make most efficient use of it on real data.

1,939 citations


Journal ArticleDOI
TL;DR: The minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes are described.
Abstract: Advancement of DNA sequencing technology allows the routine use of genome sequences in the various fields of microbiology. The information held in genome sequences proved to provide objective and reliable means in the taxonomy of prokaryotes. Here, we describe the minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes.

1,908 citations


Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations


Journal ArticleDOI
TL;DR: A significant expansion in the database size and inclusion of the new web tool for TF prioritization mean that TRRUST v2 will be a versatile database for the study of the transcriptional regulation involved in human diseases.
Abstract: Transcription factors (TFs) are major trans-acting factors in transcriptional regulation. Therefore, elucidating TF-target interactions is a key step toward understanding the regulatory circuitry underlying complex traits such as human diseases. We previously published a reference TF-target interaction database for humans-TRRUST (Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining)-which was constructed using sentence-based text mining, followed by manual curation. Here, we present TRRUST v2 (www.grnpedia.org/trrust) with a significant improvement from the previous version, including a significantly increased size of the database consisting of 8444 regulatory interactions for 800 TFs in humans. More importantly, TRRUST v2 also contains a database for TF-target interactions in mice, including 6552 TF-target interactions for 828 mouse TFs. TRRUST v2 is also substantially more comprehensive and less biased than other TF-target interaction databases. We also improved the web interface, which now enables prioritization of key TFs for a physiological condition depicted by a set of user-input transcriptional responsive genes. With the significant expansion in the database size and inclusion of the new web tool for TF prioritization, we believe that TRRUST v2 will be a versatile database for the study of the transcriptional regulation involved in human diseases.

1,055 citations



Journal ArticleDOI
TL;DR: This tutorial review provides a structured description of the main classes of organic photothermal agents and their characteristics and highlights recent advances in using PTT agents to address various cancers indications.
Abstract: Over the last decade, organic photothermal therapy (PTT) agents have attracted increasing attention as a potential complement for, or alternative to, classical drugs and sensitizers involving inorganic nanomaterials. In this tutorial review, we provide a structured description of the main classes of organic photothermal agents and their characteristics. Representative agents that have been studied in the context of photothermal therapy since 2000 are summarized and recent advances in using PTT agents to address various cancers indications are highlighted.

891 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations


Journal ArticleDOI
Eun Tae Yun1, Jeong Hoon Lee1, Jaesung Kim1, Hee Deung Park1, Jaesang Lee1 
TL;DR: This study explored singlet oxygenation and mediated electron transfer as plausible nonradical mechanisms for organic degradation by carbon nanotube (CNT)-activated peroxymonosulfate (PMS) and suggested that CNT-mediated electron transfer from organics to persulfate was primarily responsible for the nonradical degradative route.
Abstract: Select persulfate activation processes were demonstrated to initiate oxidation not reliant on sulfate radicals, although the underlying mechanism has yet to be identified. This study explored singlet oxygenation and mediated electron transfer as plausible nonradical mechanisms for organic degradation by carbon nanotube (CNT)-activated peroxymonosulfate (PMS). The degradation of furfuryl alcohol (FFA) as a singlet oxygen (1O2) indicator and the kinetic retardation of FFA oxidation in the presence of l-histidine and azide as 1O2 quenchers apparently supported a role of 1O2 in the CNT/PMS system. However, the 1O2 scavenging effect was ascribed to a rapid PMS depletion by l-histidine and azide. A comparison of CNT/PMS and photoexcited Rose Bengal (RB) excluded the possibility of singlet oxygenation during heterogeneous persulfate activation. In contrast to the case of excited RB, solvent exchange (H2O to D2O) did not enhance FFA degradation by CNT/PMS and the pH- and substrate-dependent reactivity of CNT/PMS ...

Journal ArticleDOI
28 Nov 2018-Nature
TL;DR: Local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth are demonstrated and improved techniques allow the measurement of a frequency difference with an uncertainty of the order of 10–19 between two independent optical lattice clocks, suggesting that they may be able to improve state-of-the-art geodetic techniques.
Abstract: The passage of time is tracked by counting oscillations of a frequency reference, such as Earth’s revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10−17 level1–5. However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer’s reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10−18, measurement instability of 3.2 × 10−19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [−7 ± (5)stat ± (8)sys] × 10−19, where ‘stat’ and ‘sys’ indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential5–9. Near the surface of Earth, clock comparisons at the 1 × 10−18 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena10, detect gravitational waves11, test general relativity12 and search for dark matter13–17. Improved techniques allow the measurement of a frequency difference with an uncertainty of the order of 10–19 between two independent atomic optical lattice clocks, suggesting that they may be able to improve state-of-the-art geodetic techniques.

Journal ArticleDOI
Carolina Roselli1, Mark Chaffin1, Lu-Chen Weng2, Lu-Chen Weng1  +257 moreInstitutions (82)
TL;DR: This large, multi-ethnic genome-wide association study identifies 97 loci significantly associated with atrial fibrillation that are enriched for genes involved in cardiac development, electrophysiology, structure and contractile function.
Abstract: Atrial fibrillation (AF) affects more than 33 million individuals worldwide1 and has a complex heritability2. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2238 moreInstitutions (159)
TL;DR: In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented.
Abstract: Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The b jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).

Journal ArticleDOI
TL;DR: This paper discusses how to test multiple hypotheses simultaneously while limiting type I error rate, which is caused by α inflation, and the differences between MCTs and apply them appropriately.
Abstract: Multiple comparisons tests (MCTs) are performed several times on the mean of experimental conditions. When the null hypothesis is rejected in a validation, MCTs are performed when certain experimental conditions have a statistically significant mean difference or there is a specific aspect between the group means. A problem occurs if the error rate increases while multiple hypothesis tests are performed simultaneously. Consequently, in an MCT, it is necessary to control the error rate to an appropriate level. In this paper, we discuss how to test multiple hypotheses simultaneously while limiting type I error rate, which is caused by α inflation. To choose the appropriate test, we must maintain the balance between statistical power and type I error rate. If the test is too conservative, a type I error is not likely to occur. However, concurrently, the test may have insufficient power resulted in increased probability of type II error occurrence. Most researchers may hope to find the best way of adjusting the type I error rate to discriminate the real differences between observed data without wasting too much statistical power. It is expected that this paper will help researchers understand the differences between MCTs and apply them appropriately.

Journal ArticleDOI
TL;DR: A flexible machine-learning force-field with high-level accuracy for molecular dynamics simulations is developed, for flexible molecules with up to a few dozen atoms and insights into the dynamical behavior of these molecules are provided.
Abstract: Molecular dynamics (MD) simulations employing classical force fields constitute the cornerstone of contemporary atomistic modeling in chemistry, biology, and materials science. However, the predictive power of these simulations is only as good as the underlying interatomic potential. Classical potentials often fail to faithfully capture key quantum effects in molecules and materials. Here we enable the direct construction of flexible molecular force fields from high-level ab initio calculations by incorporating spatial and temporal physical symmetries into a gradient-domain machine learning (sGDML) model in an automatic data-driven way. The developed sGDML approach faithfully reproduces global force fields at quantum-chemical CCSD(T) level of accuracy and allows converged molecular dynamics simulations with fully quantized electrons and nuclei. We present MD simulations, for flexible molecules with up to a few dozen atoms and provide insights into the dynamical behavior of these molecules. Our approach provides the key missing ingredient for achieving spectroscopic accuracy in molecular simulations.

Journal ArticleDOI
TL;DR: In patients with locally advanced HCC, OS did not differ significantly between RE and sorafenib, and the improved toxicity profile of RE may inform treatment choice in selected patients.
Abstract: Purpose Selective internal radiation therapy or radioembolization (RE) shows efficacy in unresectable hepatocellular carcinoma (HCC) limited to the liver. This study compared the safety and efficacy of RE and sorafenib in patients with locally advanced HCC. Patients and Methods SIRveNIB (selective internal radiation therapy v sorafenib), an open-label, investigator-initiated, phase III trial, compared yttrium-90 (90Y) resin microspheres RE with sorafenib 800 mg/d in patients with locally advanced HCC in a two-tailed study designed for superiority/detriment. Patients were randomly assigned 1:1 and stratified by center and presence of portal vein thrombosis. Primary end point was overall survival (OS). Efficacy analyses were performed in the intention-to-treat population and safety analyses in the treated population. Results A total of 360 patients were randomly assigned (RE, 182; sorafenib, 178) from 11 countries in the Asia-Pacific region. In the RE and sorafenib groups, 28.6% and 9.0%, respectively, failed to receive assigned therapy without significant cross-over to either group. Median OS was 8.8 and 10.0 months with RE and sorafenib, respectively (hazard ratio, 1.1; 95% CI, 0.9 to 1.4; P = .36). A total of 1,468 treatment-emergent adverse events (AEs) were reported (RE, 437; sorafenib, 1,031). Significantly fewer patients in the RE than sorafenib group had grade ≥ 3 AEs (36 of 130 [27.7%]) v 82 of 162 [50.6%]; P < .001). The most common grade ≥ 3 AEs were ascites (five of 130 [3.8%] v four of 162 [2.5%] patients), abdominal pain (three [2.3%] v two [1.2%] patients), anemia (zero v four [2.5%] patients), and radiation hepatitis (two [1.5%] v zero [0%] patients). Fewer patients in the RE group (27 of 130 [20.8%]) than in the sorafenib group (57 of 162 [35.2%]) had serious AEs. Conclusion In patients with locally advanced HCC, OS did not differ significantly between RE and sorafenib. The improved toxicity profile of RE may inform treatment choice in selected patients.

Journal ArticleDOI
TL;DR: In this paper, the authors examine the empirical association between corporate social responsibility and information asymmetry by investigating their simultaneous and endogenous effects and find that CSR engagement is inversely associated with reputational risk measure.
Abstract: In this study, we examine the empirical association between corporate social responsibility (CSR) and information asymmetry by investigating their simultaneous and endogenous effects. Employing an extensive U.S. sample, we find an inverse association between CSR engagement and the proxies of information asymmetry after controlling for various firm characteristics. The results hold using 2SLS considering the reverse side of information asymmetry influencing CSR activities. The results also hold after mitigating endogeneity based on the dynamic panel system generalized method of moment. Furthermore, the CSR–information asymmetry relation is amplified in high-risk firms due to managers’ efforts to build a good reputation. Last, we find that CSR engagement is inversely associated with reputational risk measure and lower predicted value of reputational risk is positively associated with lower information asymmetry measures. We interpret these results as supporting the stakeholder theory-based, reputation-building explanation that considers CSR engagement as a vehicle to build and maintain firm reputation thereby enhancing the information environment.

Journal ArticleDOI
TL;DR: The revised guideline for the optimal use of radiofrequency ablation for thyroid tumors is based on a comprehensive analysis of the current literature and expert consensus.
Abstract: Thermal ablation using radiofrequency is a new, minimally invasive modality employed as an alternative to surgery in patients with benign thyroid nodules and recurrent thyroid cancers. The Task Force Committee of the Korean Society of Thyroid Radiology (KSThR) developed recommendations for the optimal use of radiofrequency ablation for thyroid tumors in 2012. As new meaningful evidences have accumulated, KSThR decided to revise the guidelines. The revised guideline is based on a comprehensive analysis of the current literature and expert consensus.

Journal ArticleDOI
TL;DR: An overview of the latest progress and paradigms of FLBP-based nanoplatforms for multidisciplinary biomedical applications is presented in this tutorial review.
Abstract: Phosphorene, also known as single- or few-layer black phosphorus (FLBP), is a new member of the two-dimensional (2D) material family and has attracted significant attention in recent years for applications in optoelectronics, energy storage and biomedicine due to its unique physicochemical properties and excellent biocompatibility. FLBP is regarded as a potential biological imaging agent for cancer diagnosis due to its intrinsic fluorescence (FL) and photoacoustic (PA) properties and negligible cytotoxicity. FLBP-based photothermal and photodynamic therapies have emerged with excellent anti-tumour therapeutic efficacies due to their unique physical properties, such as near-infrared (NIR) optical absorbance, large extinction coefficients, biodegradability and reactive oxygen species (ROS) or heat generation upon light irradiation. Furthermore, FLBP is a promising drug delivery platform because of its high drug-loading capacity due to its puckered layer structure with an ultralarge surface area, and FLBP is size-controllable with facile surface chemical modification. Because of the marked advantages of FLBP nanomaterials in biomedical applications, an overview of the latest progress and paradigms of FLBP-based nanoplatforms for multidisciplinary biomedical applications is presented in this tutorial review.

Journal ArticleDOI
TL;DR: It is demonstrated that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptotic deactivation of myofibiablasts.
Abstract: Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts.

Journal ArticleDOI
TL;DR: Results show the selectivity of ethylene to methane in O- Cu combination catalysts is influenced by the electrochemical reduction environment related to the mixed valences, which will provide new strategies to improve durability of O-Cu combination catalyststs for C-C coupling products from electrochemical CO2 conversion.
Abstract: Oxygen–Cu (O–Cu) combination catalysts have recently achieved highly improved selectivity for ethylene production from the electrochemical CO2 reduction reaction (CO2RR). In this study, we developed anodized copper (AN-Cu) Cu(OH)2 catalysts by a simple electrochemical synthesis method and achieved ∼40% Faradaic efficiency for ethylene production, and high stability over 40 h. Notably, the initial reduction conditions applied to AN-Cu were critical to achieving selective and stable ethylene production activity from the CO2RR, as the initial reduction condition affects the structures and chemical states, crucial for highly selective and stable ethylene production over methane. A highly negative reduction potential produced a catalyst maintaining long-term stability for the selective production of ethylene over methane, and a small amount of Cu(OH)2 was still observed on the catalyst surface. Meanwhile, when a mild reduction condition was applied to the AN-Cu, the Cu(OH)2 crystal structure and mixed states d...

Journal ArticleDOI
TL;DR: This work demonstrates field-free switching in ferromagnetic trilayers and describes a mechanism for spin-current generation at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence.
Abstract: Magnetic torques generated through spin–orbit coupling1–8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field9–14. One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin–orbit torque is relevant to energy-efficient control of spintronic devices. Spin–orbit torques are reported in ferromagnetic trilayers that lead to the switching of perpendicular magnetizations without an external magnetic field.

Journal ArticleDOI
TL;DR: The Himalayan point mutation in the Tyr gene was introduced by microinjecting ABE mRNA and an extended gRNA into mouse embryos, obtaining Tyr mutant mice with an albino phenotype and the split ABE gene was delivered to muscle cells in a mouse model of Duchenne muscular dystrophy to correct a nonsense mutation.
Abstract: Adenine base editors (ABEs) composed of an engineered adenine deaminase and the Streptococcus pyogenes Cas9 nickase enable adenine-to-guanine (A-to-G) single-nucleotide substitutions in a guide RNA (gRNA)-dependent manner. Here we demonstrate application of this technology in mouse embryos and adult mice. We also show that long gRNAs enable adenine editing at positions one or two bases upstream of the window that is accessible with standard single guide RNAs (sgRNAs). We introduced the Himalayan point mutation in the Tyr gene by microinjecting ABE mRNA and an extended gRNA into mouse embryos, obtaining Tyr mutant mice with an albino phenotype. Furthermore, we delivered the split ABE gene, using trans-splicing adeno-associated viral vectors, to muscle cells in a mouse model of Duchenne muscular dystrophy to correct a nonsense mutation in the Dmd gene, demonstrating the therapeutic potential of base editing in adult animals.

Journal ArticleDOI
TL;DR: In this paper, the physicochemical characteristics of Langmuir-Blodgett artificial SEIs (LBASEIs) created using phosphate-functionalized reduced graphene oxides are reported.
Abstract: Practical lithium metal batteries require full and reversible utilization of thin metallic Li anodes This introduces a fundamental challenge concerning how to create solid-electrolyte interphases (SEIs) that are able to regulate interfacial transport and protect the reactive metal, without adding appreciably to the cell mass Here, we report on physicochemical characteristics of Langmuir–Blodgett artificial SEIs (LBASEIs) created using phosphate-functionalized reduced graphene oxides We find that LBASEIs not only meet the challenges of stabilizing the Li anode, but can be facilely assembled in a simple, scalable process The LBASEI derives its effectiveness primarily from its ability to form a durable coating on Li that regulates electromigration at the anode/electrolyte interface In a first step towards practical cells in which the anode and cathode capacities are matched, we report that it is possible to achieve stable operations in both coin and pouch cells composed of a thin Li anode with the LBASEI and a high-loading intercalation cathode

Journal ArticleDOI
Rafael Lozano1, Nancy Fullman, Degu Abate2, Solomon M Abay  +1313 moreInstitutions (252)
TL;DR: A global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends and a estimates of health-related SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous.

Journal ArticleDOI
TL;DR: The design of a new secure lightweight three-factor remote user authentication scheme for HIoTNs, called the user authenticated key management protocol (UAKMP), which is comparable in computation and communication costs as compared to other existing schemes.
Abstract: In recent years, the research in generic Internet of Things (IoT) attracts a lot of practical applications including smart home, smart city, smart grid, industrial Internet, connected healthcare, smart retail, smart supply chain and smart farming. The hierarchical IoT network (HIoTN) is a special kind of the generic IoT network, which is composed of the different nodes, such as the gateway node, cluster head nodes, and sensing nodes organized in a hierarchy. In HIoTN, there is a need, where a user can directly access the real-time data from the sensing nodes for a particular application in generic IoT networking environment. This paper emphasizes on the design of a new secure lightweight three-factor remote user authentication scheme for HIoTNs, called the user authenticated key management protocol (UAKMP). The three factors used in UAKMP are the user smart card, password, and personal biometrics. The security of the scheme is thoroughly analyzed under the formal security in the widely accepted real-or-random model, the informal security as well as the formal security verification using the widely accepted automated validation of Internet security protocols and applications tool. UAKMP offers several functionality features including offline sensing node registration, freely password and biometric update facility, user anonymity, and sensing node anonymity compared to other related existing schemes. In addition, UAKMP is also comparable in computation and communication costs as compared to other existing schemes.

Journal ArticleDOI
TL;DR: In this paper, the performance of the modified system is studied using proton-proton collision data at center-of-mass energy √s=13 TeV, collected at the LHC in 2015 and 2016.
Abstract: The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013–2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energy √s=13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously. We dedicate this paper to the memory of Prof. Alberto Benvenuti, whose work was fundamental for the CMS muon detector.

Journal ArticleDOI
TL;DR: This Perspective discusses the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.
Abstract: Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. This is especially true for synthetic antiferromagnets - two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and which have antiparallel magnetizations. Here, we discuss the new opportunities that arise from synthetic antiferromagnets, as compared to crystal antiferromagnets or ferromagnets.

Journal ArticleDOI
TL;DR: This paper adopts a data‐driven learning approach to discover disease‐related anatomical landmarks in the brain MR images, along with their nearby image patches, and learns an end‐to‐end MR image classifier for capturing both the local structural information conveyed by image patches located by landmarks and the global structural information derived from all detected landmarks.