scispace - formally typeset
Institution

Massachusetts Institute of Technology

EducationCambridge, Massachusetts, United States
About: Massachusetts Institute of Technology is a(n) education organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topic(s): Population & Laser. The organization has 116795 authors who have published 268000 publication(s) receiving 18272025 citation(s). The organization is also known as: MIT & M.I.T..
Topics: Population, Laser, Galaxy, Gene, Scattering
Papers
More filters

Journal ArticleDOI
TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge.

26,639 citations


Journal ArticleDOI
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

26,320 citations


Journal ArticleDOI
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

25,260 citations


Journal ArticleDOI
TL;DR: This work introduces PLINK, an open-source C/C++ WGAS tool set, and describes the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation, which focuses on the estimation and use of identity- by-state and identity/descent information in the context of population-based whole-genome studies.
Abstract: Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.

22,115 citations


Book
01 Jan 1990-
TL;DR: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures and presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers.
Abstract: From the Publisher: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures. Like the first edition,this text can also be used for self-study by technical professionals since it discusses engineering issues in algorithm design as well as the mathematical aspects. In its new edition,Introduction to Algorithms continues to provide a comprehensive introduction to the modern study of algorithms. The revision has been updated to reflect changes in the years since the book's original publication. New chapters on the role of algorithms in computing and on probabilistic analysis and randomized algorithms have been included. Sections throughout the book have been rewritten for increased clarity,and material has been added wherever a fuller explanation has seemed useful or new information warrants expanded coverage. As in the classic first edition,this new edition of Introduction to Algorithms presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers. Further,the algorithms are presented in pseudocode to make the book easily accessible to students from all programming language backgrounds. Each chapter presents an algorithm,a design technique,an application area,or a related topic. The chapters are not dependent on one another,so the instructor can organize his or her use of the book in the way that best suits the course's needs. Additionally,the new edition offers a 25% increase over the first edition in the number of problems,giving the book 155 problems and over 900 exercises thatreinforcethe concepts the students are learning.

21,642 citations


Authors

Showing all 116795 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Robert Langer2812324326306
George M. Whitesides2401739269833
Trevor W. Robbins2311137164437
George Davey Smith2242540248373
Yi Cui2201015199725
Robert J. Lefkowitz214860147995
David J. Hunter2131836207050
Daniel Levy212933194778
Rudolf Jaenisch206606178436
Mark J. Daly204763304452
David Miller2032573204840
David Baltimore203876162955
Rakesh K. Jain2001467177727
Ronald M. Evans199708166722
Network Information
Related Institutions (5)
Princeton University

146.7K papers, 9.1M citations

97% related

ETH Zurich

122.4K papers, 5.1M citations

96% related

École Polytechnique Fédérale de Lausanne

98.2K papers, 4.3M citations

96% related

Rensselaer Polytechnic Institute

39.9K papers, 1.4M citations

96% related

Georgia Institute of Technology

119K papers, 4.6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2022141
202110,566
202011,920
201911,205
201810,883
201710,505

Top Attributes

Show by:

Institution's top 5 most impactful journals

Social Science Research Network

5.3K papers, 337.8K citations

Physical Review Letters

3.8K papers, 425.2K citations

The Astrophysical Journal

2.6K papers, 226.6K citations

Nature

2.4K papers, 814.9K citations