scispace - formally typeset
Search or ask a question

Showing papers by "Sandia National Laboratories published in 2003"


Journal ArticleDOI
TL;DR: The following techniques for uncertainty and sensitivity analysis are briefly summarized: Monte Carlo analysis, differential analysis, response surface methodology, Fourier amplitude sensitivity test, Sobol' variance decomposition, and fast probability integration.

1,780 citations


Journal ArticleDOI
TL;DR: This review begins by briefly summarizing the history of direct search methods and considering the special properties of problems for which they are well suited, then turns to a broad class of methods for which the underlying principles allow general-ization to handle bound constraints and linear constraints.
Abstract: Direct search methods are best known as unconstrained optimization techniques that do not explicitly use derivatives. Direct search methods were formally proposed and widely applied in the 1960s but fell out of favor with the mathematical optimization community by the early 1970s because they lacked coherent mathematical analysis. Nonetheless, users remained loyal to these methods, most of which were easy to program, some of which were reliable. In the past fifteen years, these methods have seen a revival due, in part, to the appearance of mathematical analysis, as well as to interest in parallel and distributed com- puting. This review begins by briefly summarizing the history of direct search methods and considering the special properties of problems for which they are well suited. Our focus then turns to a broad class of methods for which we provide a unifying framework that lends itself to a variety of convergence results. The underlying principles allow general- ization to handle bound constraints and linear constraints. We also discuss extensions to problems with nonlinear constraints.

1,652 citations


Journal ArticleDOI
TL;DR: This work reports a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology.
Abstract: Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

1,396 citations


Journal ArticleDOI
TL;DR: Physical mechanisms responsible for nondestructive single-event effects in digital microelectronics are reviewed, concentrating on silicon MOS devices and integrated circuits as discussed by the authors, and the impact of technology trends on single event susceptibility and future areas of concern are explored.
Abstract: Physical mechanisms responsible for nondestructive single-event effects in digital microelectronics are reviewed, concentrating on silicon MOS devices and integrated circuits. A brief historical overview of single-event effects in space and terrestrial systems is given, and upset mechanisms in dynamic random access memories, static random access memories, and combinational logic are detailed. Techniques for mitigating single-event upset are described, as well as methods for predicting device and circuit single-event response using computer simulations. The impact of technology trends on single-event susceptibility and future areas of concern are explored.

1,028 citations


Journal ArticleDOI
TL;DR: Verification and validation of computational simulations are the primary methods for building and quantifying this confidence in modeling and simulation.
Abstract: Developers of computer codes, analysts who use the codes, and decision makers who rely on the results of the analyses face a critical question: How should confidence in modeling and simulation be critically assessed? Verification and validation (V&V) of computational simulations are the primary methods for building and quantifying this confidence. Briefly, verification is the assessment of the accuracy of the solution to a computational model. Validation is the assessment of the accuracy of a computational simulation by comparison with experimental data. In verification, the relationship of the simulation to the real world is not an issue. In validation, the relationship between computation and the real world, i.e., experimental data, is the issue.

735 citations


Journal ArticleDOI
TL;DR: Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations and results for the fifth-order method are disappointing, but both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods.

709 citations


Journal ArticleDOI
TL;DR: In this article, a review of the relaxational properties of random-site electric dipoles in dielectrics is presented, including the role of pressure and applied dc biasing electric fields in understanding the physics of these materials including the R-to-FE crossover.
Abstract: Random lattice disorder produced by chemical substitution in ABO3 perovskites can lead to the formation of dipolar impurities and defects that have a profound influence on the static and dynamic properties of these materials that are the prototypical soft ferroelectric (FE) mode systems. In these highly polarizable host lattices, dipolar entities form polar nanodomains whose size is determined by the dipolar correlation length, rc, of the host and that exhibit dielectric relaxation in an applied ac field. In the very dilute limit (< 0.1at.%) each domain behaves as a non-interacting dipolar entity with a single relaxation time. At higher concentrations of disorder, however, the domains can interact leading to more complex relaxational behaviour. Among the manifestations of such behaviour is the formation of a glass-like relaxor (R) state, or even an ordered FE state for a sufficiently high concentration of overlapping domains. After a brief discussion of the physics of random-site electric dipoles in dielectrics, this review begins with the simplest cases, namely the relaxational properties of substitutional impurities (e.g., Mn, Fe and Ca) in the quantum paraelectrics KTaO3 and SrTiO3. This is followed by discussions of the relaxational properties of Li-and Nb-doped KTaO3 and of the strong relaxors in the PbMg1/3Nb2/3O3 and La-substituted PbZr1−xTixO3 families. Some emphasis will be on the roles of pressure and applied dc biasing electric fields in understanding the physics of these materials including the R-to-FE crossover.

681 citations


Journal ArticleDOI
18 Jul 2003-Science
TL;DR: A microfluidic device has been developed that can adsorb proteins from solution, hold them with negligible denaturation, and release them on command as mentioned in this paper, which can be manipulated for proteomic functions, including preconcentration and separation of soluble proteins.
Abstract: A microfluidic device has been developed that can adsorb proteins from solution, hold them with negligible denaturation, and release them on command. The active element in the device is a 4-nanometer-thick polymer film that can be thermally switched between an antifouling hydrophilic state and a protein-adsorbing state that is more hydrophobic. This active polymer has been integrated into a microfluidic hot plate that can be programmed to adsorb and desorb protein monolayers in less than 1 second. The rapid response characteristics of the device can be manipulated for proteomic functions, including preconcentration and separation of soluble proteins on an integrated fluidics chip.

533 citations


Book ChapterDOI
12 Oct 2003
TL;DR: The issues of multipath routing in MANETs are examined to support application constraints such as reliability, load-balancing, energy-conservation, and Quality-of-Service (QoS).
Abstract: Mobile ad hoc networks (MANETs) consist of a collection of wireless mobile nodes which dynamically exchange data among themselves without the reliance on a fixed base station or a wired backbone network MANET nodes are typically distinguished by their limited power, processing, and memory resources as well as high degree of mobility In such networks, the wireless mobile nodes may dynamically enter the network as well as leave the network Due to the limited transmission range of wireless network nodes, multiple hops are usually needed for a node to exchange information with any other node in the network Thus routing is a crucial issue to the design of a MANET In this paper, we specifically examine the issues of multipath routing in MANETs Multipath routing allows the establishment of multiple paths between a single source and single destination node It is typically proposed in order to increase the reliability of data transmission (ie, fault tolerance) or to provide load balancing Load balancing is of especial importance in MANETs because of the limited bandwidth between the nodes We also discuss the application of multipath routing to support application constraints such as reliability, load-balancing, energy-conservation, and Quality-of-Service (QoS)

525 citations


Proceedings ArticleDOI
01 Jan 2003
TL;DR: An overview of modern design of experiments (DOE) techniques that can be applied in computational engineering design studies and several types of modern DOE methods are described including pseudo-Monte Carlo sampling, quasi-monte Carlo sampled, Latin hypercube sampling, orthogonal array sampling, and Hammersley sequence sampling.
Abstract: The intent of this paper is to provide an overview of modern design of experiments (DOE) techniques that can be applied in computational engineering design studies. The term modern refers to DOE techniques specifically designed for use with deterministic computer simulations. In addition, this term is used to contrast classical DOE techniques that were developed for laboratory and field experiments that possess random error sources. Several types of modern DOE methods are described including pseudo-Monte Carlo sampling, quasi-Monte Carlo sampling, Latin hypercube sampling, orthogonal array sampling, and Hammersley sequence sampling.

416 citations


Journal ArticleDOI
TL;DR: In this paper, the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost was investigated.
Abstract: An evaluation was carried out to investigate the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost. The operating SEGS (Solar Electric Generating Systems located in Mojave Desert, California) plants currently use a high temperature synthetic oil consisting of a eutectic mixture of biphenyl/ diphenyl oxide. The scope of this investigation included examination of known critical issues, postulating solutions or possible approaches where potential problems exist, and the quantification of performance and electricity cost using preliminary cost inputs. The two leading candidates were the so-called solar salt (a binary salt consisting of 60% NaNO 3 and 40% KNO 3 ) and a salt sold commercially as HitecXL (a ternary salt consisting of 48% Ca(NO 3 ) 2 , 7% NaNO 3 , and 45% KNO 3 ). Assuming a two-tank storage system and a maximum operation temperature of 450°C, the evaluation showed that the levelized electricity cost can be reduced by 14.2% compared to a state-of-the-art parabolic trough plant such as the SEGS plants. If higher temperatures are possible, the improvement may be as high as 17.6%. Thermocline salt storage systems offer even greater benefits.

Journal ArticleDOI
TL;DR: This work has developed an alternative method in which arrays of insulating posts in a channel of a microchip produce the spatially nonuniform fields needed for DEP, allowing a novel class of continuous-flow, selective particle filter/concentrator devices and the first observation of streaming dielectrophoresis.
Abstract: Dielectrophoresis (DEP), a nonlinear electrokinetic transport mechanism, can be used to concentrate and sort cells, viruses, and particles. To date, microfabricated DEP-based devices have typically used embedded metal electrodes to apply spatially nonuniform, time-varying (AC) electric fields. We have developed an alternative method in which arrays of insulating posts in a channel of a microchip produce the spatially nonuniform fields needed for DEP. Electrodes may be located remotely, allowing operation of the device down to zero frequency (DC) without excessive problems of electrolysis. Applying a sufficiently large electric field across an insulating-post array produces two flow regimes through a competition between electrokinetic flow (combined electrophoresis and electroosmosis) and dielectrophoresis. “Streaming DEP” is observed when DEP dominates diffusion but is overcome by electrokinetic flow. Particles concentrated by DEP forces in areas of electric field extrema travel electrokinetically down th...

Journal ArticleDOI
TL;DR: In this paper, the authors review the total dose, single-event effects, and dose rate hardness of silicon-on-insulator (SOI) devices and use body ties to reduce bipolar amplification.
Abstract: Silicon-on-insulator (SOI) technologies have been developed for radiation-hardened applications for many years and are rapidly becoming a main-stream commercial technology. The authors review the total dose, single-event effects, and dose rate hardness of SOI devices. The total dose response of SOI devices is more complex than for bulk-silicon devices due to the buried oxide. Radiation-induced trapped charge in the buried oxide can increase the leakage current of partially depleted transistors and decrease the threshold voltage and increase the leakage current of fully depleted transistors. Process techniques that reduce the net amount of radiation-induced positive charge trapped in the buried oxide and device design techniques that mitigate the effects of trapped charge in the buried oxide have been developed to harden SOI devices to bulk-silicon device levels. The sensitive volume for charge collection in SOI technologies is much smaller than for bulk-silicon devices potentially making SOI devices much harder to single-event upset (SEU). However, bipolar amplification caused by floating body effects can significantly reduce the SEU hardness of SOI devices. Body ties are used to reduce floating body effects and improve SEU hardness. SOI ICs are completely immune to classic four-layer p-n-p-n single-event latchup; however, floating body effects make SOI ICs susceptible to single-event snapback (single transistor latch). The sensitive volume for dose rate effects is typically two orders of magnitude lower for SOI devices than for bulk-silicon devices. By using body ties to reduce bipolar amplification, much higher dose rate upset levels can be achieved for SOI devices than for bulk-silicon devices.

Journal ArticleDOI
TL;DR: In this paper, a review of recent achievements in the dendrite modeling problem, using two distinct length scale approaches, are summarized, and it is demonstrated that when the atomistic and continuum level approaches are combined, accurate and parameter free predictions of dendritic growth velocities are possible.
Abstract: Due to its technological importance, modeling of dendrite growth in pure metals and alloys remains a significant challenge in the field of materials science. In this review recent achievements in the dendrite modeling problem, using two distinct length scale approaches, are summarized. At the nanometer scale, molecular dynamics and Monte Carlo techniques have been developed to extract two important properties of the solid–liquid interface: the kinetic coefficient and the solid–liquid interfacial free energy. Perhaps more importantly the atomistic simulation methods are capable of accurately determining the small, yet crucially important, anisotropies of these parameters. At the mesoscopic scale, advances in phase field modeling have largely overcome the numerical problem associated with the large disparity in length scales typically found in dendrite growth. It is demonstrated that, when the atomistic and continuum level approaches are combined, accurate and parameter free predictions of dendrite growth velocities are possible. In addition, extensions of atomistic and phase field modeling to the case of binary alloys are described.

Journal ArticleDOI
TL;DR: In this article, a combination of electronic-structure methods was used to explore the regions of the C6H6 potential that are important for describing the recombination of propargyl (C3H3) radicals.
Abstract: Using a combination of electronic-structure methods, we have explored in some detail the regions of the C6H6 potential that are important for describing the recombination of propargyl (C3H3) radicals. Using this information in an RRKM-based master equation, we have been able to predict rate coefficients for a variety of elementary reactions, including the C3H3 + C3H3 recombination itself. Generally, the agreement between the theory and the limited amount of experimental information available is very good, although some discrepancies remain. The most important new feature of the present analysis (over our previous one) is the inclusion of a path on the potential that connects 1,2,4,5-hexatetraene to 1,3-hexadien-5-yne and then goes on to benzene and phenyl + H without passing through fulvene. The inclusion of this path in the analysis allows a number of experimental observations to be accounted for by the theory. From the results of the master equation calculations, we propose a simple, contracted model fo...

Journal ArticleDOI
TL;DR: In this paper, the concept of statistically stored and geometrically necessary dislocations is discussed in terms of observed deformation microstructures subdivided by incidental dislocation, which is illustrated by examples of such structures formed under conditions of homogeneous and nonhomogeneous deformation, respectively.

Journal ArticleDOI
TL;DR: In this paper, a spectral formalism has been developed for the non-intrusive analysis of parametric uncertainty in reacting-flow systems, which quantifies the extent, dependence and propagation of uncertainty through the model system and allows the correlation of uncertainties in specific parameters to the resulting uncertainty in detailed flame structure.

Journal ArticleDOI
TL;DR: In this paper, the current status of four Dish-Stirling systems that are being developed for commercial markets and present system specifications and review system performance and cost data, and also review the economics, capital cost, operating and maintenance costs, and the emerging markets for Dish-stirling systems.
Abstract: Dish-Stirling systems have demonstrated the highest efficiency of any solar power generation system by converting nearly 30% of direct-normal incident solar radiation into electricity after accounting for parasitic power losses [1]. These high-performance, solar power systems have been in development for two decades with the primary focus in recent years on reducing the capital and operating costs of systems. Even though the systems currently cost about $10,000 US/kW installed, major cost reduction will occur with mass production and further development of the systems. Substantial progress has been made to improve reliability thereby reducing the operating and maintenance costs of the systems. As capital costs drop to about $3000 US/kW, promising market opportunities appear to be developing in green power and distributed generation markets in the southwestern United States and in Europe. In this paper, we review the current status of four Dish-Stirling systems that are being developed for commercial markets and present system specifications and review system performance and cost data. We also review the economics, capital cost, operating and maintenance costs, and the emerging markets for Dish-Stirling systems.

Journal ArticleDOI
TL;DR: In this article, the role of constrained microplasticity around debonded particles or shrinkage pores in forming and growing microstructurally small fatigue cracks and is based on the cyclic crack tip displacement rather than linear elastic fracture mechanics stress intensity factor.

Proceedings ArticleDOI
26 Jul 2003
TL;DR: A system that can synthesize an image by conventional means, perform the FFT, filter the image, and finally apply the inverse FFT in well under 1 second for a 512 by 512 image is demonstrated.
Abstract: The Fourier transform is a well known and widely used tool in many scientific and engineering fields. The Fourier transform is essential for many image processing techniques, including filtering, manipulation, correction, and compression. As such, the computer graphics community could benefit greatly from such a tool if it were part of the graphics pipeline. As of late, computer graphics hardware has become amazingly cheap, powerful, and flexible. This paper describes how to utilize the current generation of cards to perform the fast Fourier transform (FFT) directly on the cards. We demonstrate a system that can synthesize an image by conventional means, perform the FFT, filter the image, and finally apply the inverse FFT in well under 1 second for a 512 by 512 image. This work paves the way for performing complicated, real-time image processing as part of the rendering pipeline.

Journal ArticleDOI
TL;DR: In this article, the problem of determining the shear modulus of a linear-elastic, incompressible medium given boundary data and one component of the displacement field in the entire domain is considered.
Abstract: We consider the problem of determining the shear modulus of a linear-elastic, incompressible medium given boundary data and one component of the displacement field in the entire domain. The problem is derived from applications in quantitative elasticity imaging. We pose the problem as one of minimizing a functional and consider the use of gradient-based algorithms to solve it. In order to calculate the gradient efficiently we develop an algorithm based on the adjoint elasticity operator. The main cost associated with this algorithm is equivalent to solving two forward problems, independent of the number of optimization variables. We present numerical examples that demonstrate the effectiveness of the proposed approach.

Journal ArticleDOI
TL;DR: The application of a new automated, unbiased, multivariate statistical analysis technique to very large X-ray spectral image data sets, based in part on principal components analysis, returns physically accurate component spectra and images in a few minutes on a standard personal computer.
Abstract: Spectral imaging in the scanning electron microscope (SEM) equipped with an energy-dispersive X-ray (EDX) analyzer has the potential to be a powerful tool for chemical phase identification, but the large data sets have, in the past, proved too large to efficiently analyze. In the present work, we describe the application of a new automated, unbiased, multivariate statistical analysis technique to very large X-ray spectral image data sets. The method, based in part on principal components analysis, returns physically accurate (all positive) component spectra and images in a few minutes on a standard personal computer. The efficacy of the technique for microanalysis is illustrated by the analysis of complex multi-phase materials, particulates, a diffusion couple, and a single-pixel-detection problem.

Patent
13 Nov 2003
TL;DR: A microsystem-on-a-chip (MOS) as mentioned in this paper comprises a bottom wafer of normal thickness and a series of thinned wafers that can be glued and electrically interconnected, and the interconnection layer comprises compliant dielectric material, an interconnect structure, and can include embedded passives.
Abstract: A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.

Journal ArticleDOI
TL;DR: In this paper, the deformation of an infinite bar subjected to a self-equilibrated load distribution is investigated using the peridynamic formulation of elasticity theory, which does not involve spatial derivatives of the displacement field.
Abstract: The deformation of an infinite bar subjected to a self-equilibrated load distribution is investigated using the peridynamic formulation of elasticity theory. The peridynamic theory differs from the classical theory and other nonlocal theories in that it does not involve spatial derivatives of the displacement field. The bar problem is formulated as a linear Fredholm integral equation and solved using Fourier transform methods. The solution is shown to exhibit, in general, features that are not found in the classical result. Among these are decaying oscillations in the displacement field and progressively weakening discontinuities that propagate outside of the loading region. These features, when present, are guaranteed to decay provided that the wave speeds are real. This leads to a one-dimensional version of St. Venant's principle for peridynamic materials that ensures the increasing smoothness of the displacement field remotely from the loading region. The peridynamic result converges to the classical result in the limit of short-range forces. An example gives the solution to the concentrated load problem, and hence provides the Green's function for general loading problems.

Journal ArticleDOI
TL;DR: A systematic nomenclature is proposed to describe the types of peptides that are generated after proteolysis of crosslinked proteins, their fragmentation by tandem mass spectrometry, and an automated algorithm for MS/MS spectral assignment called “MS2Assign.”

Journal ArticleDOI
TL;DR: In this paper, the authors studied the stability characteristics of a premixed, swirl-stabilized flame and determined the effects of hydrogen addition on flame stability under fuel-lean conditions.

Journal ArticleDOI
TL;DR: In this article, a large-eddy simulation of particle-laden, swirling flow in a coaxial-jet combustor is performed, where a mixture of air and lightly loaded, spherical, glass-particles with a prescribed size distribution are treated as point sources and influence the gas phase only through momentum exchange terms.

Journal ArticleDOI
TL;DR: In this article, the authors conducted two sets of penetration experiments with concrete targets that had average compressive strengths of 23 and 39 MPa (3.3 and 5.7 ksi).

Journal ArticleDOI
TL;DR: In this paper, a simulation study of the initial stages of indentation using the embedded atom method (EAM) is presented, and a comparison is made between atomistic simulations and continuum models for elastic deformation.
Abstract: Nanoindentation experiments have shown that microstructural inhomogeneities across the surface of gold thin films lead to position-dependent nanoindentation behavior [Phys. Rev. B (2002), to be submitted]. The rationale for such behavior was based on the availability of dislocation sources at the grain boundary for initiating plasticity. In order to verify or refute this theory, a computational approach has been pursued. Here, a simulation study of the initial stages of indentation using the embedded atom method (EAM) is presented. First, the principles of the EAM are given, and a comparison is made between atomistic simulations and continuum models for elastic deformation. Then, the mechanism of dislocation nucleation in single crystalline gold is analyzed, and the effects of elastic anisotropy are considered. Finally, a systematic study of the indentation response in the proximity of a high angle, high sigma (low symmetry) grain boundary is presented; indentation behavior is simulated for varying indenter positions relative to the boundary. The results indicate that high angle grain boundaries are a ready source of dislocations in indentation-induced deformation.

Journal ArticleDOI
TL;DR: In this paper, the evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool.
Abstract: The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at this interface decreased as solidification of the weld pool progressed. The heating and cooling rates, temperature gradient and the solidification rate at the mushy zone/liquid interface for laser spot welding were much higher than those for the moving and spot gas tungsten arc welding.