scispace - formally typeset
Search or ask a question
Institution

Stevens Institute of Technology

EducationHoboken, New Jersey, United States
About: Stevens Institute of Technology is a education organization based out in Hoboken, New Jersey, United States. It is known for research contribution in the topics: Computer science & Cognitive radio. The organization has 5440 authors who have published 12684 publications receiving 296875 citations. The organization is also known as: Stevens & Stevens Tech.


Papers
More filters
Proceedings ArticleDOI
18 May 2015
TL;DR: The results from these experiments show that the shoe-mounted inertial sensors used in this work can accurately determine transitions between sidewalk and street locations to identify pedestrian risk.
Abstract: This video is a demonstration of the work discussed in our full paper available in the MobiSys'15 proceedings. The video illustrates a sensing technology for fine-grained location classification in an urban environment, for enhancing pedestrian safety. Our system seeks to detect the transitions from sidewalk locations to in-street locations, to enable applications such as alerting texting pedestrians when they step into the street. Existing positioning technologies are not sufficiently precise to allow distinguishing a position on the sidewalk from a position in the street, as explored in our previous work. To this end, we use shoe-mounted inertial sensors for location classification based on surface gradient profile and step patterns. This approach is different from existing shoe sensing solutions that focus on dead reckoning and inertial navigation. The shoe sensors relay inertial sensor measurements to a smartphone, which extracts the step pattern and the inclination of the ground a pedestrian is walking on. This allows detecting transitions such as stepping over a curb or walking down sidewalk ramps that lead into the street. We carried out walking trials in metropolitan environments in United States (Manhattan) and Europe (Turin). The results from these experiments show that we can accurately determine transitions between sidewalk and street locations to identify pedestrian risk.

80 citations

Journal ArticleDOI
TL;DR: In this paper, the electron impact ionization of hexamethyldisiloxane (HMDSO), Si2O(CH3)6, which is widely used in plasmaenhanced polymerization applications, was studied in a high resolution double focusing sector field mass spectrometer.

79 citations

Journal ArticleDOI
TL;DR: It is shown that the estimation of the expansion parameters is equivalent to estimating the second-order parameters of an unobservable FIR single-input-many-output (SIMO) process, which are directly computed (under some assumptions) from the observation data.
Abstract: Novel linear algorithms are proposed in this paper for estimating time-varying FIR systems, without resorting to higher order statistics. The proposed methods are applicable to systems where each time-varying tap coefficient can be described (with respect to time) as a linear combination of a finite number of basis functions. Examples of such channels include almost periodically varying ones (Fourier series description) or channels locally modeled by a truncated Taylor series or by a wavelet expansion. It is shown that the estimation of the expansion parameters is equivalent to estimating the second-order parameters of an unobservable FIR single-input-many-output (SIMO) process, which are directly computed (under some assumptions) from the observation data. By exploiting this equivalence, a number of different blind subspace methods are applicable, which have been originally developed in the context of time-invariant SIMO systems. Identifiability issues are investigated, and some illustrative simulations are presented.

79 citations

Journal ArticleDOI
TL;DR: The use of a microfluidic 3D bone tissue model is reported, as a high-throughput means of evaluating the efficacy of biomaterials aimed at accelerating orthopaedic implant-related wound-healing while preventing bacterial infection.

79 citations

Journal ArticleDOI
TL;DR: It is indicated that AI-enabled decision support systems, when implemented correctly, can aid in enhancing patient safety by improving error detection, patient stratification, and drug management.
Abstract: Background: Artificial intelligence (AI) provides opportunities to identify the health risks of patients and thus influence patient safety outcomes. Objective: The purpose of this systematic literature review was to identify and analyze quantitative studies utilizing or integrating AI to address and report clinical-level patient safety outcomes. Methods: We restricted our search to the PubMed, PubMed Central, and Web of Science databases to retrieve research articles published in English between January 2009 and August 2019. We focused on quantitative studies that reported positive, negative, or intermediate changes in patient safety outcomes using AI apps, specifically those based on machine-learning algorithms and natural language processing. Quantitative studies reporting only AI performance but not its influence on patient safety outcomes were excluded from further review. Results: We identified 53 eligible studies, which were summarized concerning their patient safety subcategories, the most frequently used AI, and reported performance metrics. Recognized safety subcategories were clinical alarms (n=9; mainly based on decision tree models), clinical reports (n=21; based on support vector machine models), and drug safety (n=23; mainly based on decision tree models). Analysis of these 53 studies also identified two essential findings: (1) the lack of a standardized benchmark and (2) heterogeneity in AI reporting. Conclusions: This systematic review indicates that AI-enabled decision support systems, when implemented correctly, can aid in enhancing patient safety by improving error detection, patient stratification, and drug management. Future work is still needed for robust validation of these systems in prospective and real-world clinical environments to understand how well AI can predict safety outcomes in health care settings.

79 citations


Authors

Showing all 5536 results

NameH-indexPapersCitations
Paul M. Thompson1832271146736
Roger Jones138998114061
Georgios B. Giannakis137132173517
Li-Jun Wan11363952128
Joel L. Lebowitz10175439713
David Smith10099442271
Derong Liu7760819399
Robert R. Clancy7729318882
Karl H. Schoenbach7549419923
Robert M. Gray7537139221
Jin Yu7448032123
Sheng Chen7168827847
Hui Wu7134719666
Amir H. Gandomi6737522192
Haibo He6648222370
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

Purdue University
163.5K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022139
2021765
2020820
2019799
2018563