scispace - formally typeset
Search or ask a question

Showing papers by "United States Geological Survey published in 2004"


MonographDOI
16 Dec 2004
TL;DR: The second edition of The Biomarker Guide as mentioned in this paper provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes.
Abstract: The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in the Environment and Human History details the origins of biomarkers and introduces basic chemical principles relevant to their study. It discusses analytical techniques, and applications of biomarkers to environmental and archaeological problems. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental scientists and archaeologists.

2,163 citations


Journal ArticleDOI
TL;DR: The National Land Cover Database (NLCD) as discussed by the authors is a multi-layer, multi-source database that provides consistent land cover for all 50 States, and provides a data framework which allows flexibility in developing and applying each independent data component to a wide variety of other applications.
Abstract: Multi-Resolution Land Characterization 2001 (MRLC 2001) is a second-generation Federal consortium designed to create an updated pool of nation-wide Landsat 5 and 7 imagery and derive a second-generation National Land Cover Database (NLCD 2001). The objectives of this multi-layer, multi-source database are two fold: first, to provide consistent land cover for all 50 States, and second, to provide a data framework which allows flexibility in developing and applying each independent data component to a wide variety of other applications. Components in the database include the following: (1) normalized imagery for three time periods per path/row, (2) ancillary data, including a 30 m Digital Elevation Model (DEM) derived into slope, aspect and slope position, (3) perpixel estimates of percent imperviousness and percent tree canopy (4) 29 classes of land cover data derived from the imagery, ancillary data, and derivatives, (5) classification rules, confidence estimates, and metadata from the land cover classification. This database is now being developed using a Mapping Zone approach, with 66 Zones in the continental United States and 23 Zones in Alaska. Results from three initial mapping Zones show single-pixel land cover accuracies ranging from 73 to 77 percent, imperviousness accuracies ranging from 83 to 91 percent, tree canopy accuracies ranging from 78 to 93 percent, and an estimated 50 percent increase in mapping efficiency over previous methods. The database has now entered the production phase and is being created using extensive partnering in the Federal government with planned completion by 2006.

1,605 citations


Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: Results are provided that directly correlate residues of the anti-inflammatory drug diclofenac with renal failure and renal failure in the Oriental white-backed vulture (OWBV) and it is proposed that residues of veterinary diclotenac are responsible for the OWBV decline.
Abstract: The Oriental white-backed vulture (OWBV; Gyps bengalensis) was once one of the most common raptors in the Indian subcontinent A population decline of >95%, starting in the 1990s, was first noted at Keoladeo National Park, India Since then, catastrophic declines, also involving Gyps indicus and Gyps tenuirostris, have continued to be reported across the subcontinent Consequently these vultures are now listed as critically endangered by BirdLife International In 2000, the Peregrine Fund initiated its Asian Vulture Crisis Project with the Ornithological Society of Pakistan, establishing study sites at 16 OWBV colonies in the Kasur, Khanewal and Muzaffargarh-Layyah Districts of Pakistan to measure mortality at over 2,400 active nest sites Between 2000 and 2003, high annual adult and subadult mortality (5-86%) and resulting population declines (34-95%) (ref 5 and MG, manuscript in preparation) were associated with renal failure and visceral gout Here, we provide results that directly correlate residues of the anti-inflammatory drug diclofenac with renal failure Diclofenac residues and renal disease were reproduced experimentally in OWBVs by direct oral exposure and through feeding vultures diclofenac-treated livestock We propose that residues of veterinary diclofenac are responsible for the OWBV decline

1,568 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated correlations between the age offsets and P, Sm and Nd abundances in the zircons, and concluded that the presence of Nd is not the primary cause of the apparent matrix effect.

1,485 citations


Journal ArticleDOI
TL;DR: Should the current positive AMO (warm North Atlantic) conditions persist into the upcoming decade, it is suggested two possible drought scenarios that resemble the continental-scale patterns of the 1930s and 1950s drought.
Abstract: More than half (52%) of the spatial and temporal variance in multidecadal drought frequency over the conterminous United States is attributable to the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). An additional 22% of the variance in drought frequency is related to a complex spatial pattern of positive and negative trends in drought occurrence possibly related to increasing Northern Hemisphere temperatures or some other unidirectional climate trend. Recent droughts with broad impacts over the conterminous U.S. (1996, 1999–2002) were associated with North Atlantic warming (positive AMO) and northeastern and tropical Pacific cooling (negative PDO). Much of the long-term predictability of drought frequency may reside in the multidecadal behavior of the North Atlantic Ocean. Should the current positive AMO (warm North Atlantic) conditions persist into the upcoming decade, we suggest two possible drought scenarios that resemble the continental-scale patterns of the 1930s (positive PDO) and 1950s (negative PDO) drought.

1,101 citations


Journal ArticleDOI
TL;DR: This study provides the first documentation that many of the organic wastewater-related contaminants that represent a diverse group of extensively used chemicals can survive conventional water-treatment processes and occur in potable-water supplies.

1,009 citations


Journal ArticleDOI
03 Dec 2004-Science
TL;DR: The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.
Abstract: Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.

916 citations


Journal ArticleDOI
TL;DR: The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-in infrared images in five bands centered from 0.42 to 0.86 μm.
Abstract: The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras.

914 citations


Journal ArticleDOI
TL;DR: The configuration and performance of a new global atmosphere and land model for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented in this article, where the performance of the coupled model AM2•LM2 is evaluated with a series of prescribed sea surface temperature (SST) simulations.
Abstract: The configuration and performance of a new global atmosphere and land model for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented. The atmosphere model, known as AM2, includes a new gridpoint dynamical core, a prognostic cloud scheme, and a multispecies aerosol climatology, as well as components from previous models used at GFDL. The land model, known as LM2, includes soil sensible and latent heat storage, groundwater storage, and stomatal resistance. The performance of the coupled model AM2‐LM2 is evaluated with a series of prescribed sea surface temperature (SST) simulations. Particular

838 citations


Journal ArticleDOI
TL;DR: In this paper, a spatio-temporal pattern of peak Holocene warmth (Holocene thermal maximum, HTM) is traced over 140 sites across the Western Hemisphere of the Arctic (0−180°W; north of ∼60°N).

838 citations


Journal ArticleDOI
01 Apr 2004-The Auk
TL;DR: In this paper, a generalized linear model is presented and illustrated that gives ornithologists access to a flexible, suitable alternative to logistic regression that is appropriate when exposure periods vary, as they usually do.
Abstract: Logistic regression has become increasingly popular for modeling nest success in terms of nest-specific explanatory variables. However, logistic regression models for nest fate are inappropriate when applied to data from nests found at various ages, for the same reason that the apparent estimator of nest success is biased (i.e. older clutches are more likely to be successful than younger clutches). A generalized linear model is presented and illustrated that gives ornithologists access to a flexible, suitable alternative to logistic regression that is appropriate when exposure periods vary, as they usually do. Unlike the Mayfield method (1961, 1975) and the logistic regression method of Aebischer (1999), the logistic-exposure model requires no assumptions about when nest losses occur. Nest survival models involving continuous and categorical explanatory variables, multiway classifications, and time-specific (e.g. nest age) and random effects are easily implemented with the logistic-exposure model...

Journal ArticleDOI
TL;DR: In this article, the authors used regression relations to estimate the temporal centroid of streamflow (CT) and local temperature (TI) and precipitation (PI) indices for the 1995-2099 period.
Abstract: Spring snowmelt is the most important contribution of many rivers in western North America. If climate changes, this contribution may change. A shift in the timing of springtime snowmelt towards earlier in the year already is observed during 1948-2000 in many western rivers. Streamflow timing changes for the 1995-2099 period are projected using regression relations be- tween observed streamflow-timing responses in each river, measured by the temporal centroid of streamflow (CT) each year, and local temperature (TI) and precipitation (PI) indices. Under 21st century warming trends predicted by the Parallel Climate Model (PCM) under business-as-usual greenhouse-gas emissions, streamflow timing trends across much of western North America suggest even earlier springtime snowmelt than observed to date. Projected CT changes are consistent with observed rates and directions of change during the past five decades, and are strongest in the Pacific Northwest, Sierra Nevada, and Rocky Mountains, where many rivers eventually run 30-40 days earlier. The modest PI changes projected by PCM yield minimal CT changes. The responses of CT to the simultaneous effects of projected TI and PI trends are dominated by the TI changes. Regression- based CT projections agree with those from physically-based simulations of rivers in the Pacific Northwest and Sierra Nevada.

Journal ArticleDOI
TL;DR: Concerns about selenium impacts on aquatic resources in Southeastern Idaho and British Columbia and the growing discomfort among the scientific community with a waterborne criterion has lead the US Environment Protection Agency to consider a tissue-based criterion for Selenium.

Journal ArticleDOI
TL;DR: In this article, the authors argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which illustrate by a suite of representative models and by detailed examples.
Abstract: [1] We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2–20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ∼1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales.

Journal ArticleDOI
TL;DR: In this article, power spectral den- sity (PSD) is estimated at broadband seismic stations for frequencies ranging from 0.01 to 16 Hz using probability density functions (PDFs) as a function of noise power.
Abstract: We present a new approach to characterize the background seismic noise across the continental United States. Using this approach, power spectral den- sity (PSD) is estimated at broadband seismic stations for frequencies ranging from 0.01 to 16 Hz. We selected a large number of 1-hr waveform segments during a 3-yr period, from 2001 to 2003, from continuous data collected by the U.S. National Seismograph Network and the Advanced National Seismic System (ANSS). For each segment of continuous data, the PSD is estimated and smoothed in full- octave averages at 1/8 octave intervals. Powers for each 1/8 period interval were then accumulated in 1-dB power bins. A statistical analysis of power bins yields probability density functions (PDFs) as a function of noise power for each of the octave bands at each station and component. There is no need to account for earth- quakes since they map into a background probability level. A comparison of day and night PDFs and an examination of artifacts related to station operation and episodic cultural noise allow us to estimate both the overall station quality and the level of earth noise at each site. Percentage points of the PDFs have been derived to form the basis for noise maps of the contiguous United States at body-wave frequencies. The results of our noise analysis are useful for characterizing the performance of existing broadband stations and for detecting operational problems and should be relevant to the future siting of ANSS backbone stations. The noise maps at body- wave frequencies should be useful for estimating the magnitude threshold for the ANSS backbone and regional networks or conversely for optimizing the distribution of regional network stations.


Journal ArticleDOI
TL;DR: In this article, the authors investigate strategies for mapping surface deformation in 3D by using multiple interferograms, with different imaging geometries, and their abilities to resolve the displacement vector are compared.
Abstract: [1] One of the limitations of deformation measurements made with interferometric synthetic aperture radar (InSAR) is that an interferogram only measures one component of the surface deformation — in the satellite's line of sight. We investigate strategies for mapping surface deformation in three dimensions by using multiple interferograms, with different imaging geometries. Geometries for both current and future missions are evaluated, and their abilities to resolve the displacement vector are compared. The north component is always the most difficult to determine using data from near-polar orbiting satellites. However, a satellite with an inclination of about 60°/120° would enable all three components to be well resolved. We attempt to resolve the 3D displacements for the 23 October 2002 Nenana Mountain (Alaska) Earthquake. The north component's error is much larger than the signal, but proxies for eastward and vertical motion can be determined if the north component is assumed negligible. Inversions of hypothetical coseismic interferograms demonstrate that earthquake model parameters can be well recovered from two interferograms, acquired on ascending and descending tracks.

Journal ArticleDOI
TL;DR: Pearly mussel research has begun to benefit from and contribute to current ideas about suspension feeding, life-history theory, metapopulations, flow refuges, spatial patterning and its effects, and management of endangered species.
Abstract: Pearly mussels (Unionacea) are widespread, abundant, and important in freshwater ecosystems around the world. Catastrophic declines in pearly mussel populations in North America and other parts of the world have led to a flurry of research on mussel biology, ecology, and conservation. Recent research on mussel feeding, life history, spatial patterning, and declines has augmented, modified, or overturned long-held ideas about the ecology of these animals. Pearly mussel research has begun to benefit from and contribute to current ideas about suspension feeding, life-history theory, metapopulations, flow refuges, spatial patterning and its effects, and management of endangered species. At the same time, significant gaps in understanding and apparent paradoxes in pearly mussel ecology have been exposed. To conserve remaining mussel populations, scientists and managers must simultaneously and aggressively pursue both rigorous research and conservation actions.

Journal ArticleDOI
TL;DR: A passive in situ sampling device that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants is developed.
Abstract: Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log K(ow)s < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.

Journal ArticleDOI
TL;DR: The urban contribution of OWCs to streams became progressively muted as streamflow increased, and no significant differences in the concentrations were found during high-flow conditions.

Journal ArticleDOI
TL;DR: In this paper, the authors present new correlations for assessment of the likelihood of initiation (or triggering) of soil liquefaction, which eliminate several sources of bias intrinsic to previous, similar correlations, and provide greatly reduced overall uncertainty and variance.
Abstract: This paper presents new correlations for assessment of the likelihood of initiation (or “triggering”) of soil liquefaction. These new correlations eliminate several sources of bias intrinsic to previous, similar correlations, and provide greatly reduced overall uncertainty and variance. Key elements in the development of these new correlations are (1) accumulation of a significantly expanded database of field performance case histories; (2) use of improved knowledge and understanding of factors affecting interpretation of standard penetration test data; (3) incorporation of improved understanding of factors affecting site-specific earthquake ground motions (including directivity effects, site-specific response, etc.); (4) use of improved methods for assessment of in situ cyclic shear stress ratio; (5) screening of field data case histories on a quality/uncertainty basis; and (6) use of high-order probabilistic tools (Bayesian updating). The resulting relationships not only provide greatly reduced uncertai...

Journal ArticleDOI
TL;DR: In this paper, the authors examined the volcanic history of the Long Valley region within a framework of six successive (spatially discrete) foci of silicic magmatism, each driven by locally concentrated basaltic intrusion of the deep crust in response to extensional unloading and decompression melting of the upper mantle.

Journal ArticleDOI
03 Dec 2004-Science
TL;DR: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum, and the rocks are interpreted to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation.
Abstract: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.

Journal ArticleDOI
TL;DR: An overview of the factors that influence the spatial and temporal availability of water to plants and soil biota using examples from western USA drylands highlights the importance of considering larger-scale drivers, and their effects on regional patterns; small, frequent precipitation events; and spatio-temporal heterogeneity in soil water content in translating from climatology to precipitation pulses to the dryland ecohydrology of water availability.
Abstract: In dryland ecosystems, the timing and magni- tude of precipitation pulses drive many key ecological processes, notably soil water availability for plants and soil microbiota. Plant available water has frequently been viewed simply as incoming precipitation, yet processes at larger scales drive precipitation pulses, and the subsequent transformation of precipitation pulses to plant available water are complex. We provide an overview of the factors that influence the spatial and temporal availability of water to plants and soil biota using examples from western USA drylands. Large spatial- and temporal-scale drivers of regional precipitation patterns include the position of the jet streams and frontal boundaries, the North American Monsoon, El Nino Southern Oscillation events, and the Pacific Decadal Oscillation. Topography and orography modify the patterns set up by the larger-scale drivers, resulting in regional patterns (10 2 -10 6 km 2 ) of precipita- tion magnitude, timing, and variation. Together, the large- scale and regional drivers impose important pulsed patterns on long-term precipitation trends at landscape scales, in which most site precipitation is received as small events (<5 mm) and with most of the intervals between events being short (<10 days). The drivers also influence the translation of precipitation events into available water via linkages between soil water content and components of the water budget, including interception, infiltration and runoff, soil evaporation, plant water use and hydraulic redistribution, and seepage below the rooting zone. Soil water content varies not only vertically with depth but also horizontally beneath versus between plants and/or soil crusts in ways that are ecologically important to different plant and crust types. We highlight the importance of considering larger-scale drivers, and their effects on regional patterns; small, frequent precipitation events; and spatio-temporal heterogeneity in soil water content in translating from climatology to precipitation pulses to the dryland ecohydrology of water availability for plants and soil biota.

Journal ArticleDOI
TL;DR: Data suggest that tire-wear Zn inputs to urban-suburban watersheds can be significantly greater than atmospheric inputs, although the watershed appears to retain appreciable quantities of vehicular Zn Inputs.
Abstract: Tire-tread material has a zinc (Zn) content of about 1 wt %. The quantity of tread material lost to road surfaces by abrasion has not been well characterized. Two approaches were used to assess the magnitude of this nonpoint source of Zn in the U.S. for the period 1936−1999. In the first approach, tread-wear rates from the automotive engineering literature were used in conjunction with vehicle distance-driven data from the U.S. Department of Transportation to determine Zn releases. A second approach calculated this source term from the volume of tread lost during lifetime tire wear. These analyses showed that the quantity of Zn released by tire wear in the mid-1990s was of the same magnitude as that released from waste incineration. For 1999, the quantity of Zn released by tire wear in the U.S. is estimated to be 10 000−11 000 metric tons. A specific case study focused on Zn sources and sinks in an urban−suburban watershed (Lake Anne) in the Washington, DC, metropolitan area for a time period of the late ...

Journal ArticleDOI
28 May 2004-Science
TL;DR: The authors of this Policy Forum describe changes that are required if the authors hope to meet the needs and aspirations of humans while improving the health of their planet9s ecosystems.
Abstract: Within the next 50 to 100 years, the support and maintenance of an extended human family of 8 to 11 billion people will be difficult at best. The authors of this Policy Forum describe changes that are required if we hope to meet the needs and aspirations of humans while improving the health of our planet9s ecosystems. Problems as diverse as disease transmission and global climate change have benefited substantially from advances in ecology. Such advances have set the stage for emergence of a proactive ecological science in which social and political realities are acknowledged and attention is turned decisively toward the future. The ecological sciences must chart an understanding of how ecosystem services can persist given their extensive human use. Innovative research on the sciences of ecosystem services, ecological restoration, and ecological design must be massively accelerated and must be accompanied by more effective communication of ecological knowledge to society.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the topographic and hydraulic characteristics of bedrock channels developed across the southern flank of the Santa Ynez Mountains, California and found that streams flowing from resistant to less resistant bedrock exhibit highly concave profiles and increased gradients along lower reaches relative to channels developed in uniform bedrock.
Abstract: [1] Recent theoretical models suggest that topographic characteristics of bedrock channels are products of interactions among tectonics, substrate resistance, and the climatically modulated erosive ability of the river. The degree to which these factors influence the form of channel profiles is poorly quantified at present. Here we investigate bedrock channels developed across the southern flank of the Santa Ynez Mountains, California. Uniform climate and systematic variations in lithology and rock uplift rate along the range allow comparison of channel morphology between (1) channels eroding rocks of uniform and nonuniform strength and (2) channels experiencing differences in tectonic forcing. We combine field observations, surveys, and analysis of digital data to determine topographic and hydraulic characteristics of bedrock channels. At a constant rock uplift rate, streams flowing from resistant to less resistant bedrock exhibit highly concave profiles and increased gradients along lower reaches relative to channels developed in uniform bedrock. These effects are interpreted as responses to (1) an increase in substrate resistance to channel incision in the upper reaches and (2) transport-limited gradients along lower reaches. Comparisons of channels developed across uniform lithology but experiencing an approximately sevenfold difference in rock uplift rate reveal an approximately twofold increase in gradient and an approximately threefold decrease in width. In this landscape the combined channel adjustments of gradient and width are consistent with a fluvial incision model in which channel incision rate is linearly proportional to mean bed shear stress.

Journal ArticleDOI
TL;DR: In this article, the authors present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and input-output N budgets for suburban, forested and agricultural watersheds.
Abstract: Although the watershed approach has long been used to study whole-ecosystem function, it has seldom been applied to study human-dominated systems, especially those dominated by urban and suburban land uses. Here we present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and input– output N budgets for suburban, forested, and agricultural watersheds. The work is a product of the Baltimore Ecosystem Study, a longterm study of urban and suburban ecosystems, and a component of the US National Science Foundation’s long-term ecological research (LTER) network. As expected, urban and suburban watersheds had much higher N losses than did the completely forested watershed, with N yields ranging from 2.9 to 7.9 kg N ha 1 y 1 in the urban and suburban watersheds compared with less than 1 kg N ha 1 y 1 in the completely forested watershed. Yields from urban and suburban watersheds were lower than those from an agricultural watershed (13–19.8 kg Nh a 1 y 1 ). Retention of N in the suburban watershed was surprisingly high, 75% of inputs, which were dominated by home lawn fertilizer (14.4 kg N ha 1 y 1 ) and atmospheric deposition (11.2 kg N ha 1 y 1 ). Detailed analysis of mechanisms of N retention, which must occur in the significant amounts of pervious surface present in urban and suburban watersheds, and which include storage in soils and vegetation and gaseous loss, is clearly warranted.

Journal ArticleDOI
TL;DR: In this article, the authors compared data on burn severity collected from multi-temporal Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) with similar data from the Enhanced Thematic Mapper Plus (ETM+) using the differenced Normalized Burn Ratio (dNBR).

Journal ArticleDOI
TL;DR: Large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(*) formed chemically by reduction of selenite with ascorbate.
Abstract: Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, approximately 300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H(2)Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.