scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.
Topics: Population, Groundwater, Volcano, Aquifer, Sediment


Papers
More filters
Journal ArticleDOI
07 Nov 1986-Science
TL;DR: Since models of greenhouse warming predict climatic change will be greatest in the Arctic and might already be in progress, it is prudent to attempt to understand the rapidly changing thermal regime in this region.
Abstract: Temperature profiles measured in permafrost in northernmost Alaska usually have anomalous curvature in the upper 100 meters or so. When analyzed by heat-conduction theory, the profiles indicate a variable but widespread secular warming of the permafrost surface, generally in the range of 2 to 4 Celsius degrees during the last few decades to a century. Although details of the climatic change cannot be resolved with existing data, there is little doubt of its general magnitude and timing; alternative explanations are limited by the fact that heat transfer in cold permafrost is exclusively by conduction. Since models of greenhouse warming predict climatic change will be greatest in the Arctic and might already be in progress, it is prudent to attempt to understand the rapidly changing thermal regime in this region.

718 citations

Journal ArticleDOI
TL;DR: In this paper, the partitioning of 25 trace elements between high-silica rhyolitic glass and unzoned phenocrysts of potassic and sodic sanidine, biotite, augite, ferrohedenbergite, hypersthene, fayalite, titanomagnetite, ilmenite, zircon, and allanite has been determined by INAA on suites of samples from the mildly peralkaline lavas and tuff of the Sierra La Primavera, Mexico, and the metaluminous, compo

717 citations

Journal ArticleDOI
TL;DR: Inflated sheet flows from Kilauea and Mauna Loa are morphologically similar to some thick Icelandic and submarine sheet flows, suggesting a similar mechanism of emplacement as discussed by the authors.
Abstract: Inflated pahoehoe sheet flows have a distinctive horizontal upper surface, which can be several hundred meters across, and are bounded by steep monoclinal uplifts. The inflated sheet flows we studied ranged from 1 to 5 m in thickness, but initially propagated as thin sheets of fluid pahoehoe lava, generally 20-30 cm thick. Individual lobes originated at outbreaks from the inflated front of a prior sheet-flow lobe and initially moved rapidly away from their source. Velocities slowed greatly within hours due to radial spreading and to depletion of lava stored within the source flow. As the outward flow velocity decreases, cooling promotes rapid crustal growth. At first, the crust behaves plastically as pahoehoe toes form. After the crust attains a thickness of 2-5 cm, it behaves more rigidly and develops enough strength to retain incoming lava, thus increasing the hydrostatic head at the flow front. The increased hydrostatic pressure is distributed evenly through the liquid lava core of the flow, resulting in uniform uplift of the entire sheet-flow lobe. Initial uplift rates are rapid (flows thicken to 1 m in 1-2 hours), but rates decline sharply as crustal thickness increases, and as outbreaks occur from the margins of the inflating lobe. One flow reached a final thickness of nearly 4 m after 350 hr. Inflation data define power-law curves, whereas crustal cooling follows square root of time relationships; the combination of data can be used to construct simple models of inflated sheet flows. As the flow advances, preferred pathways develop in the older portions of the liquid-cored flow; these pathways can evolve into lavatube systems within a few weeks. Formation of lava tubes results in highly efficient delivery of lava at velocities of several kilometers per hour to a flow front that may be moving 1-2 orders of magnitude slower. If advance of the sheet flow is terminated, the tube remains filled with lava that crystallizes in situ rather than draining to form the cave-like lava tubes commonly associated with pahoehoe flows. Inflated sheet flows from Kilauea and Mauna Loa are morphologically similar to some thick Icelandic and submarine sheet flows, suggesting a similar mechanism of emplacement. The planar, sheet-like geometry of flood-basalt flows may also result from inflation of sequentially emplaced flow lobes rather than nearly instantaneous emplacement as literal floods of lava.

717 citations

Journal ArticleDOI
TL;DR: In this article, the authors simulated a Mw7.0 earthquake on a blind-thrust fault and found that flexible frame and base-isolated buildings would experience severe nonlinear behavior including the possibility of collapse at some locations.
Abstract: Occurrence of large earthquakes close to cities in California is inevitable. The resulting ground shaking will subject buildings in the near-source region to large, rapid displacement pulses which are not represented in design codes. The simulated Mw7.0 earthquake on a blind-thrust fault used in this study produces peak ground displacement and velocity of 200 cm and 180 cm/sec, respectively. Over an area of several hundred square kilometers in the near-source region, flexible frame and base-isolated buildings would experience severe nonlinear behavior including the possibility of collapse at some locations. The susceptibility of welded connections to fracture significantly increases the collapse potential of steel-frame buildings under strong ground motions of the type resulting from the Mw7.0 simulation. Because collapse of a building depends on many factors which are poorly understood, the results presented here regarding collapse should be interpreted carefully.

716 citations

Journal ArticleDOI
TL;DR: A three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit.

715 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920