scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.
Topics: Population, Groundwater, Volcano, Aquifer, Sediment


Papers
More filters
Journal ArticleDOI
TL;DR: The most rapid landscape-scale shift of a woody ecotones ever documented is reported: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and pinon-juniper woodland shifted extensively and rapidly and persisted for 40 years.
Abstract: In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and pinon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.

1,042 citations

Journal ArticleDOI
01 Jun 2006-Ecology
TL;DR: Convex hull volume, a construct from computational geometry, is presented, which provides an n-dimensional measure of the volume of trait space occupied by species in a community, and it is shown that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering.
Abstract: Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering.

1,038 citations

Journal ArticleDOI
TL;DR: The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints.
Abstract: The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints The underlying physical and chemical phenomena potentially responsible for this apparent sequestration of HOCs by geosorbents are not well understood This challenges our concepts for assessing exposure and toxicity and for setting environmental quality criteria Currently there are no direct observational data revealing the molecular-scale locations in which nonpolar organic compounds accumulate when associated with natural soils or sediments Hence macroscopic observations are used to make inferences about sorption mechanisms and the chemical factors affecting the sequestration of HOCs by geosorbents Recent observations suggest that HOC interactions with geosorbents comprise different inorganic and organic surfaces and matrices, and distinctions may be drawn along these lines,

1,033 citations

Journal ArticleDOI
20 May 2005-Science
TL;DR: Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer, and fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller.
Abstract: The two largest earthquakes of the past 40 years ruptured a 1600-kilometer-long portion of the fault boundary between the Indo-Australian and southeastern Eurasian plates on 26 December 2004 [seismic moment magnitude (Mw) = 9.1 to 9.3] and 28 March 2005 (Mw = 8.6). The first event generated a tsunami that caused more than 283,000 deaths. Fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller. Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer.

1,030 citations

Journal ArticleDOI
TL;DR: In this paper, a photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High-Resolution Radiometer (AVHRR) base image.
Abstract: Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 · 106 km 2 ), about 5.05 · 10 6 km 2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy.

1,027 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920