scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.
Topics: Population, Groundwater, Volcano, Aquifer, Sediment


Papers
More filters
Journal ArticleDOI
01 Jun 1999-Geology
TL;DR: In this article, the authors measured land subsidence in Las Vegas, Nevada, United States, between April 1992 and December 1997 using spaceborne interferometric synthetic aperture radar, showing that the spatial extent of subsidence is controlled by geologic structures (faults) and sediment composition (clay thickness).
Abstract: Land subsidence in Las Vegas, Nevada, United States, between April 1992 and December 1997 was measured using spaceborne interferometric synthetic aperture radar. The detailed deformation maps clearly show that the spatial extent of subsidence is controlled by geologic structures (faults) and sediment composition (clay thickness). The maximum detected subsidence during the 5.75 yr period is 19 cm. Comparison with leveling data indicates that the subsidence rates declined during the past decade as a result of rising ground-water levels brought about by a net reduction in ground-water extraction. Temporal analysis also detects seasonal subsidence and uplift patterns, which provide information about the elastic and inelastic properties of the aquifer system and their spatial variability.

607 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of land use (forested, agricultural, urban) on water quality and aquatic biota was evaluated in three streams in the Piedmont ecoregion of North Carolina.
Abstract: Three streams in the Piedmont ecoregion of North Carolina were studied to evaluate the effect of land use (forested, agricultural, urban) on water quality and aquatic biota. In comparison with the forested stream, there were few changes in water quality at the agricultural and urban streams. Suspended-sediment yield was greatest for the urban catchment and least at the forested catchment. Suspended-sediment concentrations during storm events followed this same pattern, but at low-moderate flows suspended-sediment concentrations were greatest at the agricultural site. Most nutrient concentrations were highest at the agricultural site, and the amount of ‘available’ dissolved nitrogen was elevated at both the urban and agricultural sites. High concentrations of metals (totals) in the water column were sometimes observed at all sites, but maximum average concentrations were recorded at the urban site (especially Cr, Cu, and Pb). Maximum sediment metal concentrations, however, were not found at the urban site, but were usually recorded at the forested site. Only minor differences were noted between fish communities of the forested and agricultural sites, although both abundance and average size of some species increased at the agricultural site. The fish community at the urban site was characterized by low species richness, low biomass, and the absence of intolerant species. Invertebrate taxa richness, a biotic index, and the number of unique invertebrate species (found at only one site) indicated moderate stress (Fair water quality) at the agricultural site and severe stress (Poor water quality) at the urban site. At the agricultural site, declines in taxa richness within intolerant groups were partially offset by increases within tolerant groups. The agricultural stream had the highest abundance values, indicating enrichment. The urban site, however, was characterized by low species richness for most groups and very low abundance values. Analysis of seasonal patterns suggested detritus was the most important food source for invertebrates in the forested stream, while periphyton was of greater importance in the agricultural stream. Dominant macroinvertebrate groups shifted from Ephemeroptera at the forested site, to Chironomidae at the agricultural site, and Oligochaeta at the urban site. There was little between-site overlap in dominant species (8–7%), indicating that land use strongly influenced the invertebrate community. Chemical and physical parameters measured at the three sites did not seem sufficient to account for all of the observed differences in the invertebrate communities, suggesting some unmeasured toxicity. Biological measurements, especially macroinvertebrates community structure, consistently indicated strong between-site differences in water and habitat quality.

605 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship among vegetation, processes, and landforms is described for representative streams of four areas of the United States: high-gradient streams of the humid east, coastal-plain streams, Great Plains streams, and stream channels of the southwestern United States.

605 citations

Journal ArticleDOI
19 Dec 2008-Science
TL;DR: The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.
Abstract: Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.

604 citations

Journal ArticleDOI
TL;DR: In this article, the normalized difference water index (NDWI) has been successfully used to delineate surface water features, but two major problems have often encountered: (a) NDWIs calculated from different band combinations [visible, nearinfrared, or shortwave-infrared (SWIR)] can generate different results, and (b) NDWI thresholds vary depending on the proportions of subpixel water/non-water components.
Abstract: The normalized difference water index (NDWI) has been successfully used to delineate surface water features. However, two major problems have been often encountered: (a) NDWIs calculated from different band combinations [visible, nearinfrared, or shortwave-infrared (SWIR)] can generate different results, and (b) NDWI thresholds vary depending on the proportions of subpixel water/non-water components. We need to evaluate all the NDWIs for determining the best performing index and to establish appropriate thresholds for clearly identifying water features. We used the spectral data obtained from a spectral library to simulate the satellite sensors Landsat ETM, SPOT-5, ASTER, and MODIS, and calculated the simulated NDWI in different forms. We found that the NDWI calculated from (green ‐ SWIR)/(green SWIR), where SWIR is the shorter wavelength region (1.2 to 1.8 mm), has the most stable threshold. We recommend this NDWI be employed for mapping water, but adjustment of the threshold based on actual situations is necessary.

603 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920