scispace - formally typeset
Search or ask a question

Showing papers by "United States Geological Survey published in 2007"


Journal ArticleDOI
01 Nov 2007-Ecology
TL;DR: High classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods are observed.
Abstract: Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature.

3,368 citations


Journal ArticleDOI
TL;DR: In this paper, the role of inland water ecosystems in the global carbon cycle has been investigated and it is shown that roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea, roughly equally as inorganic and organic carbon.
Abstract: Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.

3,179 citations


Journal ArticleDOI
TL;DR: In this article, the authors estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/acft (84.0 m 3 /m 3 ).
Abstract: Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 × 10 9 m 3 /1.73 × 10 4 m 3 ). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m 3 /m 3 ). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton.

2,418 citations


Journal ArticleDOI
TL;DR: It is suggested that no single solution fits all future challenges, especially in the context of changing climates, and that the best strategy is to mix different approaches for different situations.
Abstract: We offer a conceptual framework for managing forested ecosystems under an assumption that future environments will be different from present but that we cannot be certain about the specifics of change. We encourage flexible approaches that promote reversible and incremental steps, and that favor ongoing learning and capacity to modify direction as situations change. We suggest that no single solution fits all future challenges, especially in the context of changing climates, and that the best strategy is to mix different approaches for different situations. Resources managers will be challenged to integrate adaptation strategies (actions that help ecosystems accommodate changes adaptively) and mitigation strategies (actions that enable ecosystems to reduce anthropogenic influences on global climate) into overall plans. Adaptive strategies include resistance options (forestall impacts and protect highly valued resources), resilience options (improve the capacity of ecosystems to return to desired conditions after disturbance), and response options (facilitate transition of ecosystems from current to new conditions). Mitigation strategies include options to sequester carbon and reduce overall greenhouse gas emissions. Priority-setting approaches (e.g., triage), appropriate for rapidly changing conditions and for situations where needs are greater than available capacity to respond, will become increasingly important in the future.

1,782 citations


Journal ArticleDOI
TL;DR: The HiRISE camera as mentioned in this paper provides detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006.
Abstract: [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire ∼1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. HiRISE will support Mars exploration by locating and characterizing past, present, and future landing sites, unsuccessful landing sites, and past and potentially future rover traverses. We will investigate cratering, volcanism, tectonism, hydrology, sedimentary processes, stratigraphy, aeolian processes, mass wasting, landscape evolution, seasonal processes, climate change, spectrophotometry, glacial and periglacial processes, polar geology, and regolith properties. An Internet Web site (HiWeb) will enable anyone in the world to suggest HiRISE targets on Mars and to easily locate, view, and download HiRISE data products.

1,511 citations


Journal ArticleDOI
TL;DR: It is likely, but requiring further confirmation, that adult exposure to BPA affects the brain, the female reproductive system, and the immune system and that developmental effects occur in theFemale reproductive system.

1,065 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined past and future changes in key climate, hydrological, and biophysical indicators across the US Northeast (NE) by considering the extent to which simulations of twentieth century climate from nine atmosphere-ocean general circulation models (AOGCMs) are able to reproduce observed changes in these indicators.
Abstract: To assess the influence of global climate change at the regional scale, we examine past and future changes in key climate, hydrological, and biophysical indicators across the US Northeast (NE). We first consider the extent to which simulations of twentieth century climate from nine atmosphere-ocean general circulation models (AOGCMs) are able to reproduce observed changes in these indicators. We then evaluate projected future trends in primary climate characteristics and indicators of change, including seasonal temperatures, rainfall and drought, snow cover, soil moisture, streamflow, and changes in biometeorological indicators that depend on threshold or accumulated temperatures such as growing season, frost days, and Spring Indices (SI). Changes in indicators for which temperature-related signals have already been observed (seasonal warming patterns, advances in high-spring streamflow, decreases in snow depth, extended growing seasons, earlier bloom dates) are generally reproduced by past model simulations and are projected to continue in the future. Other indicators for which trends have not yet been observed also show projected future changes consistent with a warmer climate (shrinking snow cover, more frequent droughts, and extended low-flow periods in summer). The magnitude of temperature-driven trends in the future are generally projected to be higher under the Special Report on Emission Scenarios (SRES) mid-high (A2) and higher (A1FI) emissions scenarios than under the lower (B1) scenario. These results provide confidence regarding the direction of many regional climate trends, and highlight the fundamental role of future emissions in determining the potential magnitude of changes we can expect over the coming century.

838 citations


Journal ArticleDOI
TL;DR: One of the alternative ground-motion intensity measures introduced in this paper is found to be relatively efficient and sufficient for the range of buildings considered and for both the near-source and ordinary ground motions.
Abstract: Introduced in this paper are several alternative ground-motion intensity measures (IMs) that are intended for use in assessing the seismic performance of a structure at a site susceptible to near-source and/or ordinary ground motions. A comparison of such IMs is facilitated by defining the “efficiency” and “sufficiency” of an IM, both of which are criteria necessary for ensuring the accuracy of the structural performance assessment. The efficiency and sufficiency of each alternative IM, which are quantified via (i) nonlinear dynamic analyses of the structure under a suite of earthquake records and (ii) linear regression analysis, are demonstrated for the drift response of three different moderate- to long-period buildings subjected to suites of ordinary and of near-source earthquake records. One of the alternative IMs in particular is found to be relatively efficient and sufficient for the range of buildings considered and for both the near-source and ordinary ground motions.

834 citations


Journal ArticleDOI
26 Oct 2007-Science
TL;DR: Using caesium-137 and carbon inventory measurements from a large-scale survey, consistent evidence is found for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion.
Abstract: Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year(-1) to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year(-1) resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.

831 citations


Journal ArticleDOI
TL;DR: In this paper, a set of definitions and methodologies for the assessment of CO2 storage capacity in geological media is presented, including coal beds and deep saline aquifers, and the level of detail and resolution required in the data make reliable and accurate estimation of the storage capacity of these media practical only at the local and site-specific scales.

824 citations


Journal ArticleDOI
TL;DR: It is found that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.
Abstract: The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape ( 0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.

Journal ArticleDOI
26 Jan 2007-Science
TL;DR: The characterized virus-infected fungus confers heat tolerance not only to its native monocot host but also to a eudicot host, which suggests that the underlying mechanism involves pathways conserved between these two groups of plants.
Abstract: A mutualistic association between a fungal endophyte and a tropical panic grass allows both organisms to grow at high soil temperatures. We characterized a virus from this fungus that is involved in the mutualistic interaction. Fungal isolates cured of the virus are unable to confer heat tolerance, but heat tolerance is restored after the virus is reintroduced. The virus-infected fungus confers heat tolerance not only to its native monocot host but also to a eudicot host, which suggests that the underlying mechanism involves pathways conserved between these two groups of plants.

Journal ArticleDOI
TL;DR: In this article, a vector ruggedness measure (VRM) of terrain based on a geomorphological method for measuring vector dispersion that is less correlated with slope was developed and the relationship of VRM to slope and to two commonly used indices of ruggedness in 3 physiographically different mountain ranges within the Mojave Desert of the southwestern United States.
Abstract: Terrain ruggedness is often an important variable in wildlife habitat models. Most methods used to quantify ruggedness are indices derived from measures of slope and, as a result, are strongly correlated with slope. Using a Geographic Information System, we developed a vector ruggedness measure (VRM) of terrain based on a geomorphological method for measuring vector dispersion that is less correlated with slope. We examined the relationship of VRM to slope and to 2 commonly used indices of ruggedness in 3 physiographically different mountain ranges within the Mojave Desert of the southwestern United States. We used VRM, slope, distance to water, and springtime bighorn sheep (Ovis canadensis nelsoni) adult female locations to model sheep habitat in the 3 ranges. Using logistic regression, we determined that the importance of ruggedness in habitat selection remained consistent across mountain ranges, whereas the relative importance of slope varied according to the characteristic physiography of each range. Our results indicate that the VRM quantifies local variation in terrain more independently of slope than other methods tested, and that VRM and slope distinguish 2 different components of bighorn sheep habitat.

Journal ArticleDOI
TL;DR: Samples of water and sediment from a conventional drinking-water-treatment plant were analyzed for 113 organic compounds that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons, fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids.

Journal ArticleDOI
TL;DR: This document is a summary statement of the outcome from he meeting: “Bisphenol A: An Examination of the Relevance of cological, In vitro and Laboratory Animal Studies for Assessng Risks to Human Health” sponsored by both the NIEHS and IDCR at NIH/DHHS.

Journal ArticleDOI
TL;DR: A review of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources is presented.
Abstract: Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources.

Journal ArticleDOI
TL;DR: In this paper, a technique to derive first-order site condition maps directly from topographic data is described, using global 30 arc sec (V S 30 ) measurements (here V S 30 refers to the average shear-velocity down to 30 m) aggregated from several studies in the U.S., as well as in Taiwan, Italy, and Australia.
Abstract: We describe a technique to derive first-order site condition maps directly from topographic data. For calibration, we use global 30 arc sec topographic data and V S 30 measurements (here V S 30 , refers to the average shear-velocity down to 30 m) aggregated from several studies in the U.S., as well as in Taiwan, Italy, and Australia. V S 30 values are correlated against topographic slope to develop two sets of parameters for deriving V S 30 : one for active tectonic regions where topographic relief is high, and one for stable shields where topography is more subdued. By taking the gradient of the topography and choosing ranges of slope that maximize the correlation with shallow shear-velocity observations, we can recover, to first order, many of the spatially varying features of sitecondition maps developed for California. Our site-condition map for the low-relief Mississippi Embayment also predicts the bulk of the V S 30 observations in that region despite rather low slope ranges. We find that maps derived from the slope of the topography is often well correlated with other independently-derived, regional-scale site-condition maps, but the latter maps vary in quality and continuity, and subsequently, also in their ability to match observed V S 30 measurements contained therein. Alternatively, the slope-based method provides a simple approach to uniform site condition mapping.

Journal ArticleDOI
01 Jul 2007-Geology
TL;DR: In this article, trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges were acquired.
Abstract: We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the fi eld defi ned by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fi ngerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid fi eld, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability, and found that the addition of nutrients to mangrove root accumulation caused significant changes in rates of root accumulation, which influenced both the rate and direction of change in elevation.
Abstract: Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical mangrove ecosystems.

Journal ArticleDOI
TL;DR: In this article, modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits.

Journal ArticleDOI
TL;DR: In this article, the authors consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.
Abstract: [1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for � 90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (� 1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

Journal ArticleDOI
TL;DR: This work reviews current watershed research and uses a water-quality model to investigate headwater influences on downstream receiving waters, and applies the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States.
Abstract: Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.

Journal ArticleDOI
04 Jan 2007-Nature
TL;DR: These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan’s surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface ‘liquid methane’ table.
Abstract: The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface1, 2 Initial visible3 and radar4, 5 imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface5, 6 Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16) The radar imaging polewards of 70° north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface2, 7 The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table

Journal ArticleDOI
TL;DR: A synthesis of the As issues in the light of long-standing research and with regards to the new findings presented at this conference is presented, providing a backdrop to the issues raised at the conference together with an overview of contemporary and historical issues of As contamination and health impacts.

Journal ArticleDOI
TL;DR: Both historical events and relatively recent dispersal have had a strong influence on Atlantic tropical marine biodiversity and have contributed to the biogeographical patterns observed today; however, examples of the latter process outnumber those of the former.
Abstract: Aim To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location Atlantic Ocean. Methods The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum-parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio-temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as ‘filters’ by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic. Main conclusions Our data set indicates that both historical events (e.g. Tethys closure) and relatively recent dispersal (with or without further speciation) have had a strong influence on Atlantic tropical marine biodiversity and have contributed to the biogeographical patterns we observe today; however, examples of the latter process outnumber those of the former.

Journal ArticleDOI
TL;DR: In this paper, a general upward trend in groundwater contribution to streamflow of 0.7-0.9%/yr and no pervasive change in annual flow was observed. And the increases in groundwater contributions were caused predominately by climate warming and permafrost thawing that enhances infiltration and supports deeper flowpaths.
Abstract: [1] Arctic and subarctic watersheds are undergoing climate warming, permafrost thawing, and thermokarst formation resulting in quantitative shifts in surface water –groundwater interaction at the basin scale. Groundwater currently comprises almost one fourth of Yukon River water discharged to the Bering Sea and contributes 5–10% of the dissolved organic carbon (DOC) and nitrogen (DON) and 35–45% of the dissolved inorganic carbon (DIC) and nitrogen (DIN) loads. Long-term streamflow records (>30 yrs) of the Yukon River basin indicate a general upward trend in groundwater contribution to streamflow of 0.7–0.9%/yr and no pervasive change in annual flow. We propose that the increases in groundwater contributions were caused predominately by climate warming and permafrost thawing that enhances infiltration and supports deeper flowpaths. The increased groundwater fraction may result in decreased DOC and DON and increased DIC and DIN export when annual flow remains unchanged.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the characteristics of effective monitoring programs, and contend that monitoring should be considered a fundamental component of environmental science and policy, and urge scientists who develop monitoring programs to plan in advance to ensure high data quality, accessibility, and cost-effectiveness, and they urge government agencies and other funding institutions to make greater commitments to increasing the amount and longterm stability of funding for environmental monitoring programs.
Abstract: Environmental monitoring is often criticized as being unscientific, too expensive, and wasteful. While some monitoring studies do suffer from these problems, there are also many highly successful long-term monitoring programs that have provided important scientific advances and crucial information for environmental policy. Here, we discuss the characteristics of effective monitoring programs, and contend that monitoring should be considered a fundamental component of environmental science and policy. We urge scientists who develop monitoring programs to plan in advance to ensure high data quality, accessibility, and cost-effectiveness, and we urge government agencies and other funding institutions to make greater commitments to increasing the amount and long-term stability of funding for environmental monitoring programs.

Journal ArticleDOI
TL;DR: In this article, the export and Δ 14 C-age of dissolved organic carbon (DOC) was determined for the Yenisey, Lena, Ob', Mackenzie, and Yukon rivers for 2004-2005.
Abstract: [1] The export and Δ 14 C-age of dissolved organic carbon (DOC) was determined for the Yenisey, Lena, Ob', Mackenzie, and Yukon rivers for 2004-2005. Concentrations of DOC elevate significantly with increasing discharge in these rivers, causing approximately 60% of the annual export to occur during a 2-month period following spring ice breakup. We present a total annual flux from the five rivers of ∼16 teragrams (Tg), and conservatively estimate that the total input of DOC to the Arctic Ocean is 25-36 Tg, which is ∼5-20% greater than previous fluxes. These fluxes are also ∼2.5 x greater than temperate rivers with similar watershed sizes and water discharge. Δ 14 C-DOC shows a clear relationship with hydrology. A small pool of DOC slightly depleted in Δ 14 C is exported with base flow. The large pool exported with spring thaw is enriched in Δ 14 C with respect to current-day atmospheric Δ 1 C-CO 2 values. A simple model predicts that ∼50% of DOC exported during the arctic spring thaw is 1-5 years old, ∼25% is 6-10 years in age, and 15% is 11-20 years old. The dominant spring melt period, a historically undersampled period, exports a large amount of young and presumably semilabile DOC to the Arctic Ocean.

Journal ArticleDOI
TL;DR: In this paper, an iterative procedure that implements the classification of continuous topography as a problem in digital image-processing automatically divides an area into categories of surface form; three taxonomic criteria, slope gradient, local convexity, and surface texture, are calculated from a square-grid digital elevation model (DEM).

Journal ArticleDOI
TL;DR: Of 55 volatile organic compounds analyzed in groundwater samples, solvents were among the most frequently detected and ranked high in terms of the frequencies of concentrations greater than or near Maximum Contaminant Levels (MCLs).
Abstract: Four chlorinated solvents-methylene chloride, perchloroethene (PCE), 1,1,1-trichloroethane, and trichloroethene (TCE)-were analyzed in samples of groundwater taken throughout the conterminous United States by the U.S. Geological Survey. The samples were collected between 1985 and 2002 from more than 5,000 wells. Of 55 volatile organic compounds (VOCs) analyzed in groundwater samples, solvents were among the most frequently detected. Mixtures of solvents in groundwater were common and may be the result of common usage of solvents or degradation of one solvent to another. Relative to other VOCs with Maximum Contaminant Levels (MCLs), PCE and TCE ranked high in terms of the frequencies of concentrations greater than or near MCLs. The probability of occurrence of solvents in groundwater was associated with dissolved oxygen content of groundwater, sources such as urban land use and population density, and hydraulic properties of the aquifer. The results reinforce the importance of understanding the redox conditions of aquifers and the hydraulic properties of the saturated and vadose zones in determining the intrinsic susceptibility of groundwater to contamination by solvents. The results also reinforce the importance of controlling sources of solvents to groundwater.