scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.
Topics: Population, Groundwater, Volcano, Aquifer, Sediment


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors have suggested replacing the terminology of fire intensity and fire severity with a more appropriate one, which is defined as ecosystem impacts from fire and thus is open to individual interpretation.
Abstract: Several recent papers have suggested replacing the terminology of fire intensity and fire severity. Part of the problem with fire intensity is that it is sometimes used incorrectly to describe fire effects, when in fact it is justifiably restricted to measures of energy output. Increasingly, the term has created confusion because some authors have restricted its usage to a single measure of energy output referred to as fireline intensity. This metric is most useful in understanding fire behavior in forests, but is too narrow to fully capture the multitude of ways fire energy affects ecosystems. Fire intensity represents the energy released during various phases of a fire, and different metrics such as reaction intensity, fireline intensity, temperature, heating duration and radiant energy are useful for different purposes. Fire severity, and the related term burn severity, have created considerable confusion because of recent changes in their usage. Some authors have justified this by contending that fire severity is defined broadly as ecosystem impacts from fire and thus is open to individual interpretation. However, empirical studies have defined fire severity operationally as the loss of or change in organic matter aboveground and belowground, although the precise metric varies with management needs. Confusion arises because fire or burn severity is sometimes defined so that it also includes ecosystem responses. Ecosystem responses include soil erosion, vegetation regeneration, restoration of community structure, faunal recolonization, and a plethora of related response variables. Although some ecosystem responses are correlated with measures of fire or burn severity, many important ecosystem processes have either not been demonstrated to be predicted by severity indices or have been shown in some vegetation types to be unrelated to severity. This is a critical issue because fire or burn severity are readily measurable parameters, both on the ground and with remote sensing, yet ecosystem responses are of most interest to resource managers.

1,528 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived ground motion prediction equations for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type.
Abstract: This paper contains ground-motion prediction equations (GMPEs) for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type. Our equations are for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped pseudo-absolute-acceleration spectra (PSA) at periods between 0.01 s and 10 s. They were derived by empirical regression of an extensive strong-motion database compiled by the “PEER NGA” (Pacific Earthquake Engineering Research Center’s Next Generation Attenuation) project. For periods less than 1s , the analysis used 1,574 records from 58 mainshocks in the distance range from 0 km to 400 km (the number of available data decreased as period increased). The primary predictor variables are moment magnitude M, closest horizontal distance to the surface projection of the fault plane R JB , and the time-averaged shear-wave velocity from the surface to 30 m VS30. The equations are applicable for M =5–8 , RJB 200 km, and VS30= 180– 1300 m / s. DOI: 10.1193/1.2830434

1,512 citations

Journal ArticleDOI
TL;DR: The HiRISE camera as mentioned in this paper provides detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006.
Abstract: [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire ∼1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. HiRISE will support Mars exploration by locating and characterizing past, present, and future landing sites, unsuccessful landing sites, and past and potentially future rover traverses. We will investigate cratering, volcanism, tectonism, hydrology, sedimentary processes, stratigraphy, aeolian processes, mass wasting, landscape evolution, seasonal processes, climate change, spectrophotometry, glacial and periglacial processes, polar geology, and regolith properties. An Internet Web site (HiWeb) will enable anyone in the world to suggest HiRISE targets on Mars and to easily locate, view, and download HiRISE data products.

1,511 citations

Journal ArticleDOI
01 Aug 2003-Ecology
TL;DR: In this article, the authors present a model that enables direct estimation of these parameters when the probability of detecting the species is less than 1. The model does not require any assumptions of process stationarity, as do some previous methods, but does require detection/nondetection data to be collected in a manner similar to Pollock's robust design as used in mark-recapture studies.
Abstract: Few species are likely to be so evident that they will always be detected when present. Failing to allow for the possibility that a target species was present, but undetected, at a site will lead to biased estimates of site occupancy, colonization, and local extinction probabilities. These population vital rates are often of interest in long-term monitoring programs and metapopulation studies. We present a model that enables direct estimation of these parameters when the probability of detecting the species is less than 1. The model does not require any assumptions of process stationarity, as do some previous methods, but does require detection/nondetection data to be collected in a manner similar to Pollock's robust design as used in mark-recapture studies. Via simulation, we show that the model provides good estimates of parameters for most scenarios considered. We illustrate the method with data from monitoring programs of Northern Spotted Owls ( Strix occiden- talis caurina) in northern California and tiger salamanders (Ambystoma tigrinum) in Min- nesota, USA.

1,506 citations

Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.
Abstract: Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of streamflow trends on flow regime further complicates the issue. Here we investigate the changes in risk of great floods--that is, floods with discharges exceeding 100-year levels from basins larger than 200,000 km(2)--using both streamflow measurements and numerical simulations of the anthropogenic climate change associated with greenhouse gases and direct radiative effects of sulphate aerosols. We find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.

1,503 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920