scispace - formally typeset
Search or ask a question
Institution

University of Crete

EducationRethymno, Greece
About: University of Crete is a education organization based out in Rethymno, Greece. It is known for research contribution in the topics: Population & Galaxy. The organization has 8681 authors who have published 21684 publications receiving 709078 citations. The organization is also known as: Panepistimio Kritis.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed method to handle approximate searching by image content in medical image databases has several desirable properties: it is much faster than sequential scanning for searching in the main memory and on the disk, thus scaling-up well for large databases.
Abstract: We propose a method to handle approximate searching by image content in medical image databases. Image content is represented by attributed relational graphs holding features of objects and relationships between objects. The method relies on the assumption that a fixed number of "labeled" or "expected" objects (e.g., "heart", "lungs", etc.) are common in all images of a given application domain in addition to a variable number of "unexpected" or "unlabeled" objects (e.g., "tumor", "hematoma", etc.). The method can answer queries by example, such as "find all X-rays that are similar to Smith's X-ray". The stored images are mapped to points in a multidimensional space and are indexed using state-of-the-art database methods (R-trees). The proposed method has several desirable properties: (a) Database search is approximate, so that all images up to a prespecified degree of similarity (tolerance) are retrieved. (b) It has no "false dismissals" (i.e., all images qualifying query selection criteria are retrieved). (c) It is much faster than sequential scanning for searching in the main memory and on the disk (i.e., by up to an order of magnitude), thus scaling-up well for large databases.

284 citations

Journal ArticleDOI
TL;DR: The results show that pure carbon nanoscrolls cannot accumulate hydrogen because the interlayer distance is too small, however, an opening of the spiral structure to approximately 7 A followed by alkali doping can make them very promising materials for hydrogen storage application.
Abstract: A multiscale theoretical approach was used for the investigation of hydrogen storage in the recently synthesized carbon nanoscrolls. First, ab initio calculations at the density functional level of theory (DFT) were performed in order to (a) calculate the binding energy of H2 molecules at the walls of nanoscrolls and (b) fit the parameters of the interatomic potential used in Monte Carlo simulations. Second, classical Monte Carlo simulations were performed for estimating the H2 storage capacity of “experimental size” nanoscrolls containing thousands of atoms. Our results show that pure carbon nanoscrolls cannot accumulate hydrogen because the interlayer distance is too small. However, an opening of the spiral structure to approximately 7 A followed by alkali doping can make them very promising materials for hydrogen storage application, reaching 3 wt % at ambient temperature and pressure.

283 citations

Journal ArticleDOI
TL;DR: In this paper, basic quantum electrodynamics and quantum optics aspects in microstructures that exhibit a gap in the spectrum of the electromagnetic radiation they support, known as photonic crystals are reviewed.
Abstract: We review basic quantum electrodynamics and quantum optics aspects in microstructures that exhibit a gap in the spectrum of the electromagnetic radiation they support, known as photonic crystals. After a brief sketch of the properties of such materials we discuss the behaviour of few-level atoms or collections thereof with transition frequencies inside and in the vicinity of the gap. The discussion is cast in terms of a unified formalism which facilitates the comparison with standard cavity-atom physics.

283 citations

Journal ArticleDOI
TL;DR: Upregulated miR-21 affects PDCD4 expression and regulates aberrant T cell responses in human SLE, and represents potential biomarkers in SLE as their expression reflects underlying pathogenic processes and correlates with disease activity.
Abstract: Objective MicroRNAs (miRNAs) regulate the expression of genes involved in immune activation. A study was undertaken to characterise the miRNA signature and identify novel genes involved in the regulation of immune responses in systemic lupus erythematosus (SLE). Methods The expression of 365 miRNAs in peripheral blood mononuclear cells of patients with SLE and healthy controls was analysed using TaqMan Low Density Arrays. The results were validated by quantitative real-time PCR and potential target genes were identified using prediction analysis software. The effect of miR-21 on T cell function was assessed by transfection with antago-miR-21 or pre-miR-21. Results A 27-miRNA signature was identified in patients with SLE; 19 miRNAs correlated with disease activity. Eight miRNAs were deregulated specifically in T cells and four miRNAs in B cells. miR-21 was upregulated and strongly correlated with SLE disease activity (r 2 =0.92). Compared with controls, CD4 T lymphocytes from patients with SLE had higher basal and activation-induced miR-21 expression. Silencing of miR-21 reversed the activated phenotype of T cells from patients with SLE—namely, enhanced proliferation, interleukin 10 production, CD40L expression and their capacity to drive B cell maturation into Ig-secreting CD19+CD38 hi IgD−(plasma cells. Overexpression of mMiR-21 in normal T cells led to acquisition of an activated phenotype. Investigation of putative gene- targets showed that PDCD4 (a selective protein translation inhibitor) was suppressed by miR-21 and its expression was decreased in active SLE. Conclusions miRNAs represent potential biomarkers in SLE as their expression reflects underlying pathogenic processes and correlates with disease activity. Upregulated miR-21 affects PDCD4 expression and regulates aberrant T cell responses in human SLE.

283 citations

Journal ArticleDOI
TL;DR: The pipeline of Akt inhibitors and their preclinical and clinical examination status are explored, presenting the potential clinical application of these agents as a monotherapy or in combination with ionizing radiation, other targeted therapies, or chemotherapy.
Abstract: Targeted cancer therapies are used to inhibit the growth, progression, and metastasis of the tumor by interfering with specific molecular targets and are currently the focus of anticancer drug development. Protein kinase B, also known as Akt, plays a central role in many types of cancer and has been validated as a therapeutic target nearly two decades ago. This review summarizes the intracellular functions of Akt as a pivotal point of converging signaling pathways involved in cell growth, proliferation, apoptotis and neo‑angiogenesis, and focuses on the drug design strategies to develop potent anticancer agents targeting Akt. The discovery process of Akt inhibitors has evolved from adenosine triphosphate (ATP)‑competitive agents to alternative approaches employing allosteric sites in order to overcome the high degree of structural similarity between Akt isoforms in the catalytic domain, and considerable structural analogy to the AGC kinase family. This process has led to the discovery of inhibitors with greater specificity, reduced side-effects and lower toxicity. A second generation of Akt has inhibitors emerged by incorporating a chemically reactive Michael acceptor template to target the nucleophile cysteines in the catalytic activation loop. The review outlines the development of several promising drug candidates emphasizing the importance of each chemical scaffold. We explore the pipeline of Akt inhibitors and their preclinical and clinical examination status, presenting the potential clinical application of these agents as a monotherapy or in combination with ionizing radiation, other targeted therapies, or chemotherapy.

282 citations


Authors

Showing all 8725 results

NameH-indexPapersCitations
Mercouri G. Kanatzidis1521854113022
T. J. Pearson150895126533
Stylianos E. Antonarakis13874693605
William Wijns12775295517
Andrea Comastri11170649119
Costas M. Soukoulis10864450208
Elias Anaissie10737242808
Jian Zhang107306469715
Emmanouil T. Dermitzakis10129482496
Andreas Engel9944833494
Nikos C. Kyrpides9671162360
David J. Kerr9554439408
Manolis Kogevinas9562328521
Thomas Walz9225529981
Jean-Paul Latgé9134329152
Network Information
Related Institutions (5)
University of Amsterdam
140.8K papers, 5.9M citations

94% related

University of Helsinki
113.1K papers, 4.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Paris
174.1K papers, 5M citations

93% related

Rutgers University
159.4K papers, 6.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202328
2022103
20211,381
20201,288
20191,180
20181,131