scispace - formally typeset
Search or ask a question
Institution

University of Cyprus

EducationNicosia, Cyprus
About: University of Cyprus is a education organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Large Hadron Collider & Context (language use). The organization has 3624 authors who have published 15157 publications receiving 412135 citations.


Papers
More filters
Journal ArticleDOI
G. L. Bayatian, S. Chatrchyan, G. Hmayakyan, Albert M. Sirunyan  +2060 moreInstitutions (143)
TL;DR: In this article, the authors present a detailed analysis of the performance of the Large Hadron Collider (CMS) at 14 TeV and compare it with the state-of-the-art analytical tools.
Abstract: CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider (LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking--through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start-up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb−1 or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, Bs production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb−1 to 30 fb−1. The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z0 boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing ET, B-mesons and τ's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model

973 citations

Journal ArticleDOI
TL;DR: In this article, a systematic literature review was conducted to identify and summarise the core features of inquiry-based learning by means of a systematic review and developed a synthesized inquiry cycle that combines the strengths of existing Inquiry-Based Learning frameworks.

972 citations

Journal ArticleDOI
TL;DR: The authors investigate why 75 percent of U.S. households do not hold stocks despite the equity premium and predictions of expected-utility models and show that risk aversion per se, heterogeneity of beliefs, habit persistence, time nonseparability, and quantity constraints on borrowing do not account for the phenomenon.
Abstract: The authors investigate why 75 percent of U.S. households do not hold stocks despite the equity premium and predictions of expected-utility models. The question is relevant for privatization, asset pricing, and tax progressivity issues. They show that risk aversion per se, heterogeneity of beliefs, habit persistence, time nonseparability, and quantity constraints on borrowing do not account for the phenomenon. A wedge between borrowing and lending rates, and minimum-investment requirements are plausible but empirically weak factors. More promising explanations are inertia and departures from expected-utility maximization. There is also qualified support for nondiversifiable income risk as a contributing factor. Copyright 1995 by Royal Economic Society.

971 citations

Journal ArticleDOI
TL;DR: Techniques by which MFS-type methods are extended to certain classes of non-trivial problems and adapted for the solution of inhomogeneous problems are outlined.
Abstract: The aim of this paper is to describe the development of the method of fundamental solutions (MFS) and related methods over the last three decades. Several applications of MFS-type methods are presented. Techniques by which such methods are extended to certain classes of non-trivial problems and adapted for the solution of inhomogeneous problems are also outlined.

958 citations

Book ChapterDOI
TL;DR: This chapter defines and presents in sufficient detail the fundamental concepts of what constitutes a coordination model or language and describes the main existing coordination models and languages as either ``data-driven'' or ``control-driven'''' (also called ``process-'''' or ``task-oriented'').
Abstract: A new class of models, formalisms and mechanisms has recently evolved for describing concurrent and distributed computations based on the concept of ``coordination''''. The purpose of a coordination model and associated language is to provide a means of integrating a number of possibly heterogeneous components together, by interfacing with each component in such a way that the collective set forms a single application that can execute on and take advantage of parallel and distributed systems. In this chapter we initially define and present in sufficient detail the fundamental concepts of what constitutes a coordination model or language. We then go on to classify these models and languages as either ``data-driven'''' or ``control-driven'''' (also called ``process-'''' or ``task-oriented''''). Next, the main existing coordination models and languages are described in sufficient detail to let the reader appreciate their features and put them into perspective with respect to each other. The chapter ends with a discussion comparing the various models and some conclusions.

957 citations


Authors

Showing all 3715 results

NameH-indexPapersCitations
Luca Lista1402044110645
Peter Wittich1391646102731
Stefano Giagu1391651101569
Norbert Perrimon13861073505
Pierluigi Paolucci1381965105050
Kreso Kadija135127095988
Daniel Thomas13484684224
Julia Thom132144192288
Alberto Aloisio131135687979
Panos A Razis130128790704
Jehad Mousa130122686564
Alexandros Attikis128113677259
Fotios Ptochos128103681425
Charalambos Nicolaou128115283886
Halil Saka128113777106
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Tel Aviv University
115.9K papers, 3.9M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022126
20211,224
20201,200
20191,044
20181,009