scispace - formally typeset
Search or ask a question
Institution

University of Michigan

EducationAnn Arbor, Michigan, United States
About: University of Michigan is a education organization based out in Ann Arbor, Michigan, United States. It is known for research contribution in the topics: Computer science & Chemistry. The organization has 138538 authors who have published 342338 publications receiving 17638979 citations. The organization is also known as: UMich & UM.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the mean values of all the powers of the velocity $u$ and the displacement $s$ of a free particle in Brownian motion are calculated and the exact expressions for the square of the deviation of a harmonically bound particle in the Fokker-Planck partial differential equation as a function of the time and the initial deviation are obtained.
Abstract: With a method first indicated by Ornstein the mean values of all the powers of the velocity $u$ and the displacement $s$ of a free particle in Brownian motion are calculated It is shown that $u\ensuremath{-}{u}_{0}\mathrm{exp}(\ensuremath{-}\ensuremath{\beta}t)$ and $s\ensuremath{-}\frac{{u}_{0}}{\ensuremath{\beta}[1\ensuremath{-}\mathrm{exp}(\ensuremath{-}\ensuremath{\beta}t)]}$ where ${u}_{0}$ is the initial velocity and $\ensuremath{\beta}$ the friction coefficient divided by the mass of the particle, follow the normal Gaussian distribution law For $s$ this gives the exact frequency distribution corresponding to the exact formula for ${s}^{2}$ of Ornstein and F\"urth Discussion is given of the connection with the Fokker-Planck partial differential equation By the same method exact expressions are obtained for the square of the deviation of a harmonically bound particle in Brownian motion as a function of the time and the initial deviation Here the periodic, aperiodic and overdamped cases have to be treated separately In the last case, when $\ensuremath{\beta}$ is much larger than the frequency and for values of $t\ensuremath{\gg}{\ensuremath{\beta}}^{\ensuremath{-}1}$, the formula takes the form of that previously given by Smoluchowski

3,394 citations

Journal ArticleDOI
Rameen Beroukhim, Craig H. Mermel1, Craig H. Mermel2, Dale Porter3, Guo Wei1, Soumya Raychaudhuri4, Soumya Raychaudhuri1, Jerry Donovan3, Jordi Barretina1, Jordi Barretina2, Jesse S. Boehm1, Jennifer Dobson1, Jennifer Dobson2, Mitsuyoshi Urashima5, Kevin T. Mc Henry3, Reid M. Pinchback1, Azra H. Ligon4, Yoon Jae Cho6, Leila Haery1, Leila Haery2, Heidi Greulich, Michael R. Reich1, Wendy Winckler1, Michael S. Lawrence1, Barbara A. Weir2, Barbara A. Weir1, Kumiko E. Tanaka2, Kumiko E. Tanaka1, Derek Y. Chiang2, Derek Y. Chiang7, Derek Y. Chiang1, Adam J. Bass4, Adam J. Bass2, Adam J. Bass1, Alice Loo3, Carter Hoffman1, Carter Hoffman2, John R. Prensner1, John R. Prensner2, Ted Liefeld1, Qing Gao1, Derek Yecies2, Sabina Signoretti2, Sabina Signoretti4, Elizabeth A. Maher8, Frederic J. Kaye, Hidefumi Sasaki9, Joel E. Tepper7, Jonathan A. Fletcher4, Josep Tabernero10, José Baselga10, Ming-Sound Tsao11, Francesca Demichelis12, Mark A. Rubin12, Pasi A. Jänne4, Pasi A. Jänne2, Mark J. Daly1, Mark J. Daly2, Carmelo Nucera13, Ross L. Levine14, Benjamin L. Ebert1, Benjamin L. Ebert2, Benjamin L. Ebert4, Stacey Gabriel1, Anil K. Rustgi15, Cristina R. Antonescu14, Marc Ladanyi14, Anthony Letai2, Levi A. Garraway2, Levi A. Garraway1, Massimo Loda2, Massimo Loda4, David G. Beer16, Lawrence D. True17, Aikou Okamoto5, Scott L. Pomeroy6, Samuel Singer14, Todd R. Golub2, Todd R. Golub18, Todd R. Golub1, Eric S. Lander1, Eric S. Lander2, Eric S. Lander19, Gad Getz1, William R. Sellers3, Matthew Meyerson2, Matthew Meyerson1 
18 Feb 2010-Nature
TL;DR: It is demonstrated that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival, and a large majority of SCNAs identified in individual cancer types are present in several cancer types.
Abstract: A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.

3,375 citations

Journal ArticleDOI
25 Aug 2020-JAMA
TL;DR: This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19, the novel severe acute respiratory syndrome coronavirus 2 pandemic that has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease.
Abstract: Importance The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19. Observations SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact. Infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. The average time from exposure to symptom onset is 5 days, and 97.5% of people who develop symptoms do so within 11.5 days. The most common symptoms are fever, dry cough, and shortness of breath. Radiographic and laboratory abnormalities, such as lymphopenia and elevated lactate dehydrogenase, are common, but nonspecific. Diagnosis is made by detection of SARS-CoV-2 via reverse transcription polymerase chain reaction testing, although false-negative test results may occur in up to 20% to 67% of patients; however, this is dependent on the quality and timing of testing. Manifestations of COVID-19 include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure. Approximately 5% of patients with COVID-19, and 20% of those hospitalized, experience severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-19 require supplemental oxygen. Treatment for individuals with COVID-19 includes best practices for supportive management of acute hypoxic respiratory failure. Emerging data indicate that dexamethasone therapy reduces 28-day mortality in patients requiring supplemental oxygen compared with usual care (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]) and that remdesivir improves time to recovery (hospital discharge or no supplemental oxygen requirement) from 15 to 11 days. In a randomized trial of 103 patients with COVID-19, convalescent plasma did not shorten time to recovery. Ongoing trials are testing antiviral therapies, immune modulators, and anticoagulants. The case-fatality rate for COVID-19 varies markedly by age, ranging from 0.3 deaths per 1000 cases among patients aged 5 to 17 years to 304.9 deaths per 1000 cases among patients aged 85 years or older in the US. Among patients hospitalized in the intensive care unit, the case fatality is up to 40%. At least 120 SARS-CoV-2 vaccines are under development. Until an effective vaccine is available, the primary methods to reduce spread are face masks, social distancing, and contact tracing. Monoclonal antibodies and hyperimmune globulin may provide additional preventive strategies. Conclusions and Relevance As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.

3,371 citations

Journal ArticleDOI
Peter S. Hammerman1, Doug Voet1, Michael S. Lawrence1, Douglas Voet1  +342 moreInstitutions (32)
27 Sep 2012-Nature
TL;DR: It is shown that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour.
Abstract: Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours, offering new avenues of investigation for the treatment of squamous cell lung cancers.

3,356 citations

Journal ArticleDOI
TL;DR: In this paper, a measure of changes in alliance partners' technological capabilities, based on the citation patterns of their patent portfolios, is used to analyze changes in the extent to which partner firms' technological resources overlap as a result of alliance participation.
Abstract: This paper examines interfirm knowledge transfers within strategic alliances. Using a new measure of changes in alliance partners' technological capabilities, based on the citation patterns of their patent portfolios, we analyze changes in the extent to which partner firms' technological resources ‘overlap’ as a result of alliance participation. This measure allows us to test hypotheses from the literature on interfirm knowledge transfer in alliances, with interesting results: we find support for some elements of this ‘received wisdom’—equity arrangements promote greater knowledge transfer, and ‘absorptive capacity’ helps explain the extent of technological capability transfer, at least in some alliances. But the results also suggest limits to the ‘capabilities acquisition’ view of strategic alliances. Consistent with the argument that alliance activity can promote increased specialization, we find that the capabilities of partner firms become more divergent in a substantial subset of alliances.

3,355 citations


Authors

Showing all 142736 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Ronald C. Kessler2741332328983
Graham A. Colditz2611542256034
George M. Whitesides2401739269833
Salim Yusuf2311439252912
Richard A. Flavell2311328205119
John Q. Trojanowski2261467213948
Irving L. Weissman2011141172504
Francis S. Collins196743250787
Eric B. Rimm196988147119
Robert M. Califf1961561167961
Martin White1962038232387
Craig B. Thompson195557173172
Eric J. Topol1931373151025
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023508
2022375,426
202117,451
202017,549
201916,234