scispace - formally typeset
Search or ask a question

Showing papers by "University of Rhode Island published in 2013"


Journal ArticleDOI
TL;DR: In this article, the mean composition of mid-ocean ridge basalts (MORB) is determined using a global data set of major elements, trace elements, and isotopes compiled from new and previously published data.
Abstract: [1] The mean composition of mid-ocean ridge basalts (MORB) is determined using a global data set of major elements, trace elements, and isotopes compiled from new and previously published data. A global catalog of 771 ridge segments, including their mean depth, length, and spreading rate enables calculation of average compositions for each segment. Segment averages allow weighting by segment length and spreading rate and reduce the bias introduced by uneven sampling. A bootstrapping statistical technique provides rigorous error estimates. Based on the characteristics of the data, we suggest a revised nomenclature for MORB. “ALL MORB” is the total composition of the crust apart from back-arc basins, N-MORB the most likely basalt composition encountered along the ridge >500 km from hot spots, and D-MORB the depleted end-member. ALL MORB and N-MORB are substantially more enriched than early estimates of normal ridge basalts. The mean composition of back-arc spreading centers requires higher extents of melting and greater concentrations of fluid-mobile elements, reflecting the influence of water on back-arc petrogenesis. The average data permit a re-evaluation of several problems of global geochemistry. The K/U ratio reported here (12,340 ± 840) is in accord with previous estimates, much lower than the estimate of Arevalo et al. (2009). The low Sm/Nd and 143Nd/144Nd ratio of all morb and N-MORB provide constraints on the hypothesis that Earth has a non-chondritic primitive mantle. Either Earth is chondritic in Sm/Nd and the hypothesis is incorrect or MORB preferentially sample an enriched reservoir, requiring a large depleted reservoir in the deep mantle.

1,103 citations


Journal ArticleDOI
TL;DR: ACSM’s new preparticipation health screening recommendations are as follows: individuals with 2 or more major CVD risk factors; individuals with signs and symptoms of CVD; and those with known cardiac, pulmonary, or metabolic disease.
Abstract: Introduction Previously the American College of Sports Medicine (ACSM) preparticipation health screening recommendations were cardiovascular disease (CVD) risk assessment and stratification of all people, and a medical examination and symptomlimited exercise testing as part of the preparticipation health screening prior to initiating vigorous-intensity physical activity in individuals at increased risk for occult CVD (14). Individuals at increased risk in these recommendations were men Q45 yr and women Q55 yr; those with 2 or more major CVD risk factors; individuals with signs and symptoms of CVD; and those with known cardiac, pulmonary, or metabolic disease. ACSM’s new preparticipation health screening recommendations are as follows:

622 citations


Journal ArticleDOI
TL;DR: In this paper, the surface reactions of electrolytes with a silicon anode in lithium ion cells have been investigated using two novel techniques that are enabled by the use of binder-free silicon (BF-Si) nanoparticle anodes.
Abstract: The surface reactions of electrolytes with a silicon anode in lithium ion cells have been investigated. The investigation utilizes two novel techniques that are enabled by the use of binder-free silicon (BF-Si) nanoparticle anodes. The first method, transmission electron microscopy with energy dispersive X-ray spectroscopy, allows straightforward analysis of the BF-Si solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Coin cells (BF-Si/Li) were cycled in electrolytes containing LiPF6 salt and ethylene carbonate or fluoroethylene carbonate solvent. Capacity retention was significantly better for cells cycled with LiPF6/FEC electrolyte than for cells cycled with LiPF6/EC electrolyte. Our unique combination of techniques establishes that for LiPF6/EC electrolyte the BF-Si SEI continuously grows during the first ...

447 citations


Journal ArticleDOI
TL;DR: In this article, the surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated using two novel techniques, which are enabled by the use of binder-free graphite anodes.
Abstract: The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI...

412 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied the H2O contents of the least degassed melt inclusions from each volcano and found that the mean and common average values for H2Os are within one s.d.

400 citations


Journal ArticleDOI
21 May 2013-PLOS ONE
TL;DR: This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature that can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades.
Abstract: ‘‘It takes a village to finish (marine) science these days’’ Paraphrased from Curtis Huttenhower (the Human Microbiome project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into modelling projections. Using our community-wide approach we can reduce such protocol-driven variability in culture studies, and can begin to address more complex issues such as the effect of multiple environmental drivers on ocean biota.

379 citations


Journal ArticleDOI
TL;DR: An international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics is described, which aims to deliver sequences and analytical tools for each of theArthropod branches andEach of the species having beneficial and negative effects on humankind.
Abstract: Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems Arthropods compete with humans for food and transmit devastating diseases They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists, With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind

316 citations



Journal ArticleDOI
TL;DR: The Cattell's scree test as mentioned in this paper is a graphical strategy with a non-numerical solution to determine the number of components to retain, and it is one of the most frequently used strategies for determining the principal component to retain.
Abstract: Most of the strategies that have been proposed to determine the number of components that account for the most variation in a principal components analysis of a correlation matrix rely on the analysis of the eigenvalues and on numerical solutions. The Cattell's scree test is a graphical strategy with a nonnumerical solution to determine the number of components to retain. Like Kaiser's rule, this test is one of the most frequently used strategies for determining the number of components to retain. However, the graphical nature of the scree test does not definitively establish the number of components to retain. To circumvent this issue, some numerical solutions are proposed, one in the spirit of Cattell's work and dealing with the scree part of the eigenvalues plot, and one focusing on the elbow part of this plot. A simulation study compares the efficiency of these solutions to those of other previously proposed methods. Extensions to factor analysis are possible and may be particularly useful with many low-dimensional components. Several strategies have been proposed to determine the num- ber of components that account for the most variation in a principal components analysis of a correlation matrix. Most of these rely on the analysis of the eigenvalues of the corre- lation matrix and on numerical solutions. For example, Kaiser's eigenvalue greater than one rule (Guttman, 1954; Kaiser, 1960), parallel analysis (Buja & Eyuboglu, 1992; Horn, 1965; Hoyle & Duvall, 2004), or hypothesis signifi- cance tests, like Bartlett's test (1950), make use of numerical criteria for comparison or statistical significance criteria. Independently of these numerical solutions, Cattell (1966) proposed the scree test, a graphical strategy to determine the number of components to retain. Along with the Kaiser's rule, the scree test is probably the most used strategy and it is included in almost all statistical software dealing with principal components analysis. Unfortunately, it is generally recognized that the graphical nature of the Cattell's scree test does not enable clear decision-making about the number of components to retain. The previously proposed non-graphical solutions for

270 citations


Journal ArticleDOI
TL;DR: This work considers spatial modelling techniques that may be advantageous to applied ecologists such as quantification of uncertainty in a two-stage model and smoothing in areas with complex boundaries and considers a popular approach based on generalized additive models.
Abstract: Summary 1. Our understanding of a biological population can be greatly enhanced by modelling their distribution in space and as a function of environmental covariates. Such models can be used to investigate the relationships between distribution and environmental covariates as well as reliably estimate abundances and create maps of animal/ plant distribution. 2. Density surface models consist of a spatial model of the abundance of a biological population which has been corrected for uncertain detection via distance sampling methods. 3. We review recent developments in the field and consider the likely directions of future research before focussing on a popular approach based on generalized additive models. In particular, we consider spatial modelling techniques that may be advantageous to applied ecologists such as quantification of uncertainty in a two-stage model and smoothing in areas with complex boundaries. 4. The methods discussed are available in an R package developed by the authors (dsm) and are largely implemented in the popular Windows software Distance.

259 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed and tested an attention-based theory of search by top management teams and the influence on firm innovativeness, using an in-depth field study of 61 publicly traded high-technology firms and their top executives.
Abstract: We develop and test an attention-based theory of search by top management teams and the influence on firm innovativeness. Using an in-depth field study of 61 publicly traded high-technology firms and their top executives, we find that the location selection and intensity of search independently and jointly influence new product

Journal ArticleDOI
01 Oct 2013-ACS Nano
TL;DR: Comparison of hollow CuS nanoparticles with hollow gold nanospheres in similar particle sizes and morphology following intravenous administration to mice will advance the development of HCuSNPs as a new class of biodegradable inorganic nanomaterials for photothermal therapy.
Abstract: Gold and copper nanoparticles have been widely investigated for photothermal therapy of cancer. However, degradability and toxicity of these nanoparticles remain concerns. Here, we compare hollow CuS nanoparticles (HCuSNPs) with hollow gold nanospheres (HAuNS) in similar particle sizes and morphology following intravenous administration to mice. The injected pegylated HCuSNPs (PEG-HCuSNPs) are eliminated through both hepatobiliary (67 percentage of injected dose, %ID) and renal (23 %ID) excretion within one month postinjection. By contrast, 3.98 %ID of Au is excreted from liver and kidney within one month after iv injection of pegylated HAuNS (PEG-HAuNS). Comparatively, PEG-HAuNS are almost nonmetabolizable, while PEG-HCuSNPs are considered biodegradable nanoparticles. PEG-HCuSNPs do not show significant toxicity by histological or blood chemistry analysis. Principal component analysis and 2-D peak distribution plots of data from matrix-assisted laser desorption ionization-time-of-flight imaging mass spec...

Journal ArticleDOI
01 Dec 2013-Surgery
TL;DR: Both recurrences and death from PTC can occur more than 30 years after being treated, thus lifelong follow-up of patients with PTC is necessary.

Journal ArticleDOI
TL;DR: The highest dissolution rate and supersaturation of poorly water soluble drugs could be attributed to drug-polymer interactions occurred during HME.

Journal ArticleDOI
TL;DR: This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td Immunogenicity.

Journal ArticleDOI
17 Jan 2013-PLOS ONE
TL;DR: The results support a model in which invading pathogenic E. coli must compete with the gut microbiota to obtain the nutrients needed to colonize and establish infection; accordingly, the outcome of the challenge is determined by the aggregate capacity of the native microbiota to consume the nutrients required by the pathogen.
Abstract: Escherichia coli is a single species consisting of many biotypes, some of which are commensal colonizers of mammals and others that cause disease. Humans are colonized on average with five commensal biotypes, and it is widely thought that the commensals serve as a barrier to infection by pathogens. Previous studies showed that a combination of three pre-colonized commensal E. coli strains prevents colonization of E. coli O157:H7 in a mouse model (Leatham, et al., 2010, Infect Immun 77: 2876–7886). The commensal biotypes included E. coli HS, which is known to successfully colonize humans at high doses with no adverse effects, and E. coli Nissle 1917, a human commensal strain that is used in Europe as a preventative of traveler's diarrhea. We hypothesized that commensal biotypes could exert colonization resistance by consuming nutrients needed by E. coli O157:H7 to colonize, thus preventing this first step in infection. Here we report that to colonize streptomycin-treated mice E. coli HS consumes six of the twelve sugars tested and E. coli Nissle 1917 uses a complementary yet divergent set of seven sugars to colonize, thus establishing a nutritional basis for the ability of E. coli HS and Nissle 1917 to occupy distinct niches in the mouse intestine. Together these two commensals use the five sugars previously determined to be most important for colonization of E. coli EDL933, an O157:H7 strain. As predicted, the two commensals prevented E. coli EDL933 colonization. The results support a model in which invading pathogenic E. coli must compete with the gut microbiota to obtain the nutrients needed to colonize and establish infection; accordingly, the outcome of the challenge is determined by the aggregate capacity of the native microbiota to consume the nutrients required by the pathogen.

Journal ArticleDOI
TL;DR: In this article, an investigation of the interrelationship of cycling performance, solution structure, and electrode surface film structure has been conducted for electrolytes composed of different concentrations of LiPF6 in propylene carbonate (PC) with a binder-free (BF) graphite electrode.
Abstract: An investigation of the interrelationship of cycling performance, solution structure, and electrode surface film structure has been conducted for electrolytes composed of different concentrations of LiPF6 in propylene carbonate (PC) with a binder-free (BF) graphite electrode. Varying the concentration of LiPF6 changes the solution structure, altering the predominant mechanism of electrolyte reduction at the electrode interface. The change in mechanism results in a change in the structure of the solid electrolyte interface (SEI) and the reversible cycling of the cell. At low concentrations of LiPF6 in PC (1.2 M), electrochemical cycling and cyclic voltammetry (CV) of BF graphite electrodes reveal continuous electrolyte reduction and no lithiation/delithiation of the graphite. The solution structure is dominated by solvent-separated ion pairs (Li+(PC)4//PF6–), and the primary reduction product of the electrolyte is lithium propylene dicarbonate (LPDC). At high concentrations of LiPF6 in PC (3.0–3.5 M), elec...

Journal ArticleDOI
TL;DR: The group was the first to synthesize colloidal metallic nanoparticles of different shapes and compare their catalytic activity in solution and found that the most active among these were Metallic nanoparticles having sharp edges, sharp corners, or rough surfaces, thus, tetrahedral platinum nanoparticles are more active than spheres.
Abstract: There are two main classes of metallic nanoparticles: solid and hollow. Each type can be synthesized in different shapes and structures. Practical use of these nanoparticles depends on the properties they acquire on the nanoscale. Plasmonic nanoparticles of silver and gold are the most studied, with applications in the fields of sensing, medicine, photonics, and catalysis. In this Account, we review our group’s work to understand the catalytic properties of metallic nanoparticles of different shapes.Our group was the first to synthesize colloidal metallic nanoparticles of different shapes and compare their catalytic activity in solution. We found that the most active among these were metallic nanoparticles having sharp edges, sharp corners, or rough surfaces. Thus, tetrahedral platinum nanoparticles are more active than spheres. We proposed this happens because sharper, rougher particles have more valency-unsatisfied surface atoms (i.e., atoms that do not have the complete number of bonds that they can ch...

Journal ArticleDOI
TL;DR: A library of 16 rationally designed pHLIP variants is reported on, showing how the tuning of the biophysical properties of peptide–lipid bilayer interactions alters tumor targeting, distribution in organs, and blood clearance.
Abstract: Cancer is a complex disease with a range of genetic and biochemical markers within and among tumors, but a general tumor characteristic is extracellular acidity, which is associated with tumor growth and development. Acidosis could be a universal marker for cancer imaging and the delivery of therapeutic molecules, but its promise as a cancer biomarker has not been fully realized in the clinic. We have discovered a unique approach for the targeting of acidic tissue using the pH-sensitive folding and transmembrane insertion of pH (low) insertion peptide (pHLIP). The essence of the molecular mechanism has been elucidated, but the principles of design need to be understood for optimal clinical applications. Here, we report on a library of 16 rationally designed pHLIP variants. We show how the tuning of the biophysical properties of peptide–lipid bilayer interactions alters tumor targeting, distribution in organs, and blood clearance. Lead compounds for PET/single photon emission computed tomography and fluorescence imaging/MRI were identified, and targeting specificity was shown by use of noninserting variants. Finally, we present our current understanding of the main principles of pHLIP design.

Journal ArticleDOI
TL;DR: A new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization and provides an alternative choice rather than crafting the reinforcement signal manually from prior knowledge is presented.
Abstract: In this paper, we present a new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization. Specifically, we build the reference network on top of the critic network to form a dual critic network design that contains the detailed internal goal representation to help approximate the value function. This internal goal signal, working as the reinforcement signal for the critic network in our design, is adaptively generated by the reference network and can also be adjusted automatically. In this way, we provide an alternative choice rather than crafting the reinforcement signal manually from prior knowledge. In this paper, we adopt the online action-dependent heuristic dynamic programming (ADHDP) design and provide the detailed design of the dual critic network structure. Detailed Lyapunov stability analysis for our proposed approach is presented to support the proposed structure from a theoretical point of view. Furthermore, we also develop a virtual reality platform to demonstrate the real-time simulation of our approach under different disturbance situations. The overall adaptive learning performance has been tested on two tracking control benchmarks with a tracking filter. For comparative studies, we also present the tracking performance with the typical ADHDP, and the simulation results justify the improved performance with our approach.

Journal ArticleDOI
01 Jan 2013-Appetite
TL;DR: Findings indicate a multidisciplinary intervention focusing on emotion and stress management in addition to dietary behavior change should be developed to reduce the potential for weight gain associated with emotional eating in the college-aged population.

Journal ArticleDOI
TL;DR: In this paper, the authors identified studies that evaluate the use of risk prediction models for mortality in ambulatory patients with heart failure and describe their performance and clinical applicability, and identified 34 studies testing 20 models.
Abstract: Background—Optimal management of heart failure requires accurate assessment of prognosis. Many prognostic models are available. Our objective was to identify studies that evaluate the use of risk prediction models for mortality in ambulatory patients with heart failure and describe their performance and clinical applicability. Methods and Results—We searched for studies in Medline, Embase, and CINAHL in May 2012. Two reviewers selected citations including patients with heart failure and reporting on model performance in derivation or validation cohorts. We abstracted data related to population, outcomes, study quality, model discrimination, and calibration. Of the 9952 studies reviewed, we included 34 studies testing 20 models. Only 5 models were validated in independent cohorts: the Heart Failure Survival Score, the Seattle Heart Failure Model, the PACE (incorporating peripheral vascular disease, age, creatinine, and ejection fraction) risk score, a model by Frankenstein et al, and the SHOCKED predictors...

Journal ArticleDOI
TL;DR: In this article, the authors simulate the 2011 Tohoku-Oki tsunami using new coseismic tsunami sources based on inverting onshore and offshore geodetic data, using 3D Finite Element Models (FEMs).
Abstract: In this work, we simulate the 2011 M9 Tohoku-Oki tsunami using new coseismic tsunami sources based on inverting onshore and offshore geodetic data, using 3D Finite Element Models (FEM). Such FEMs simulate elastic dislocations along the plate boundary interface separating the stiff subducting Pacific Plate from the relatively weak forearc and volcanic arc of the overriding Eurasian plate. Due in part to the simulated weak forearc materials, such sources produce significant shallow slip (several tens of meters) along the updip portion of the rupture near the trench. To assess the accuracy of the new approach, we compare observations and numerical simulations of the tsunami's far- and near-field coastal impact for: (i) one of the standard seismic inversion sources (UCSB; Shao et al. 2011); and (ii) the new FEM sources. Specifically, results of numerical simulations for both sources, performed using the fully nonlinear and dispersive Boussinesq wave model FUNWAVE-TVD, are compared to DART buoy, GPS tide gauge, and inundation/runup measurements. We use a series of nested model grids with varying resolution (down to 250 m nearshore) and size, and assess effects on model results of the latter and of model physics (such as when including dispersion or not). We also assess the effects of triggering the tsunami sources in the propagation model: (i) either at once as a hot start, or with the spatiotemporal sequence derived from seismic inversion; and (ii) as a specified surface elevation or as a more realistic time and space-varying bottom boundary condition (in the latter case, we compute the initial tsunami generation up to 300 s using the non-hydrostatic model NHWAVE). Although additional refinements are expected in the near future, results based on the current FEM sources better explain long wave near-field observations at DART and GPS buoys near Japan, and measured tsunami inundation, while they simulate observations at distant DART buoys as well or better than the UCSB source. None of the sources, however, are able to explain the largest runup and inundation measured between 39.5° and 40.25°N, which could be due to insufficient model resolution in this region (Sanriku/Ria) of complex bathymetry/topography, and/or to additional tsunami generation mechanisms not represented in the coseismic sources (e.g., splay faults, submarine mass failure). This will be the object of future work.

Journal ArticleDOI
TL;DR: In this paper, the authors derived fully nonlinear, weakly dispersive model equations for propagation of surface gravity waves in a shallow, homogeneous ocean of variable depth on the surface of a rotating sphere.

Journal ArticleDOI
TL;DR: This article applied qualitative comparative analysis (QCA) in an examination of data from 15 societies varying in their degree of market integration (MI) and participation in world religions (WRs); the data are available in Henrich et al. (2010b).
Abstract: The study here applies qualitative comparative analysis (QCA) in an examination of data from 15 societies varying in their degree of market integration (MI) and participation in world religions (WRs); the data are available in Henrich et al. (2010b). The findings here provide a more nuanced coverage of the influences of cultural causal recipes on fairness and punishment in exchanges with strangers than “net effect” explanations. The coverage here explains how acts of fairness and punishment are contingent on several alternative paths including both low as well as high levels of MI and WR. Contrary to conclusions by Henrich et al. (2010a), depending on additional ingredients in cultural recipes, a society does not need to achieve MI and adoption of a WR to be fair and punish unfairness.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the development and variability of the Great Whirl (GW), a large quasi-stationary anticyclone that appears off the coast of Somalia during the southwest monsoon season.
Abstract: [1] In situ measurements are used, together with sea surface height data, to study the development and variability of the Great Whirl (GW), a large quasi-stationary anticyclone that appears off the coast of Somalia during the southwest monsoon season. We find that anticyclonic circulation indicative of the GW appears on average in April, almost two months before the onset of the southwest monsoon winds. This early initiation is coincident with the arrival of annual Rossby waves at the western boundary. With the onset of the monsoon winds in early June, the GW-proper intensifies quickly, remaining at its peak throughout July, August, and September, and dissipating about one month after the winds have died. The GW is present for an average 166 ± 30 days per year and the position of its northern flank, close to 9°N, coincides with the latitude of zero wind stress curl. The intraseasonal variability of the GW is intense as a result of mutual advection with one to three flanking cyclones, which accompany the GW 70% of the time and tend to circulate clockwise around it. There is no consistent seasonal pattern for the development or dissipation of the GW, although movement to the southwest is common toward the end of the season. The GW of 1995 deepened from 200 m in June to over 1000 m in September, and strengthened from a swirl transport of 10 to 60 Sv. Cool waters in its core resulted from advection via the Somali Current and some local vertical mixing.

Journal ArticleDOI
TL;DR: Brain-derived neurotrophic factor signaling is defective in Angelman syndrome and can be rescued by disruption of Arc/PSD95 binding.
Abstract: Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction.



Journal ArticleDOI
TL;DR: This is the first report of such manipulation by a nonpropagative virus that belongs to an exclusively plant-infecting family of viruses (Geminiviridae) and suggests that the virus may alter the biotype B-biotype Q competitive interaction in favor of biotype Q.
Abstract: For many insect-vectored plant viruses, the relationship between feeding behavior and vector competence may prove integral to an understanding of the epidemiology of the resulting plant disease. While plant-infecting viruses are well known to change host plant physiology in a way that makes them more attractive to vectors, viral manipulation of the vectors themselves has only recently been reported. Previous research suggested that the rapid spread of Tomato yellow leaf curl virus (TYLCV) throughout China has been facilitated by its primary vector, the whitefly Bemisia tabaci. We conducted two experiments testing the impact of TYLCV infection of the host plant (tomato) and vector (B. tabaci biotypes B and Q) on whitefly feeding behavior. Whiteflies of biotypes B and Q both appeared to find TYLCV-infected plants more attractive, probing them more quickly and having a greater number of feeding bouts; this did not, however, alter the total time spent feeding. Viruliferous whiteflies fed more readily than uninfected whiteflies and spent more time salivating into sieve tube elements. Because vector salivation is essential for viral transmission, this virally mediated alteration of behavior should provide TYLCV a direct fitness benefit. This is the first report of such manipulation by a nonpropagative virus that belongs to an exclusively plant-infecting family of viruses (Geminiviridae). In the context of previous research showing that feeding on TYLCV-infected plants harms biotype B but helps biotype Q, the fact that both biotypes were equally affected by TYLCV also suggests that the virus may alter the biotype B-biotype Q competitive interaction in favor of biotype Q.