scispace - formally typeset
Search or ask a question

Showing papers in "Cell Death and Disease in 2011"


Journal ArticleDOI
TL;DR: This work examines the factors and circumstances that determine whether H2O2 acts in a pro-survival or deleterious manner, and reveals that the diverse functions of ROS can be determined by the subcellular source, location and duration of these molecules within the cell.
Abstract: Reactive oxygen species (ROS) are a group of molecules produced in the cell through metabolism of oxygen. Endogenous ROS such as hydrogen peroxide (H₂O₂) have long been recognised as destructive molecules. The well-established roles they have in the phagosome and genomic instability has led to the characterisation of these molecules as non-specific agents of destruction. Interestingly, there is a growing body of literature suggesting a less sinister role for this Jekyll and Hyde molecule. It is now evident that at lower physiological levels, H₂O₂ can act as a classical intracellular signalling molecule regulating kinase-driven pathways. The newly discovered biological functions attributed to ROS include proliferation, migration, anoikis, survival and autophagy. Furthermore, recent advances in detection and quantification of ROS-family members have revealed that the diverse functions of ROS can be determined by the subcellular source, location and duration of these molecules within the cell. In light of this confounding paradox, we will examine the factors and circumstances that determine whether H₂O₂ acts in a pro-survival or deleterious manner.

532 citations


Journal ArticleDOI
TL;DR: Recent progress in the fields of autophagy, apoptosis, and necrosis is reviewed and the involvement of these mechanisms in cardiac pathology is highlighted and potential translational implications are highlighted.
Abstract: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Although treatments have improved, development of novel therapies for patients with CVD remains a major research goal. Apoptosis, necrosis, and autophagy occur in cardiac myocytes, and both gradual and acute cell death are hallmarks of cardiac pathology, including heart failure, myocardial infarction, and ischemia/reperfusion. Pharmacological and genetic inhibition of autophagy, apoptosis, or necrosis diminishes infarct size and improves cardiac function in these disorders. Here, we review recent progress in the fields of autophagy, apoptosis, and necrosis. In addition, we highlight the involvement of these mechanisms in cardiac pathology and discuss potential translational implications.

403 citations


Journal ArticleDOI
TL;DR: Treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters associated with MDR, as well as epithelial–mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells.
Abstract: Development of multidrug resistance (MDR) is a major deterrent in the effective treatment of metastatic cancers by chemotherapy. Even though MDR and cancer invasiveness have been correlated, the molecular basis of this link remains obscure. We show here that treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters (ABC transporters) associated with MDR, as well as epithelial–mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells. Interestingly, the mere induction of an EMT in immortalized and non-invasive cell lines increased their expression of ABC transporters, migration, invasion, and drug resistance. Conversely, reversal of EMT in invasive cells by downregulating EMT-inducing transcription factors reduced their expression of ABC transporters, invasion, and rendered them more chemosensitive. Mechanistically, we demonstrate that the promoters of ABC transporters carry several binding sites for EMT-inducing transcription factors, and overexpression of Twist, Snail, and FOXC2 increases the promoter activity of ABC transporters. Furthermore, chromatin immunoprecipitation studies revealed that Twist binds directly to the E-box elements of ABC transporters. Thus, our study identifies EMT inducers as novel regulators of ABC transporters, thereby providing molecular insights into the long-standing association between invasiveness and MDR. Targeting EMT transcription factors could hence serve as novel strategies to curb both metastasis and the associated drug resistance.

322 citations


Journal ArticleDOI
TL;DR: Results show that astrocytes are important mediators of the neurotoxic events downstream of elevated Aβ in models of AD, and suggest that mechanisms underlying pro-inflammatory cytokine release might be an important target for therapy.
Abstract: Alzheimer's disease (AD) is pathologically characterised by the age-dependent deposition of β-amyloid (Aβ) in senile plaques, intraneuronal accumulation of tau as neurofibrillary tangles, synaptic dysfunction and neuronal death Neuroinflammation, typified by the accumulation of activated microglia and reactive astrocytes, is believed to modulate the development and/or progression of AD We have used primary rat neuronal, astrocytic and mixed cortical cultures to investigate the contribution of astrocyte-mediated inflammatory responses during Aβ-induced neuronal loss We report that the presence of small numbers of astrocytes exacerbate Aβ-induced neuronal death, caspase-3 activation and the production of caspase-3-cleaved tau Furthermore, we show that astrocytes are essential for the Aβ-induced tau phosphorylation observed in primary neurons The release of soluble inflammatory factor(s) from astrocytes accompanies these events, and inhibition of astrocyte activation with the anti-inflammatory agent, minocycline, reduces astrocytic inflammatory responses and the associated neuronal loss Aβ-induced increases in caspase-3 activation and the production of caspase-3-truncated tau species in neurons were reduced when the astrocytic response was attenuated with minocycline Taken together, these results show that astrocytes are important mediators of the neurotoxic events downstream of elevated Aβ in models of AD, and suggest that mechanisms underlying pro-inflammatory cytokine release might be an important target for therapy

320 citations


Journal ArticleDOI
TL;DR: This review attempts to outline the emerging mechanisms that can underlie some of the biological activities of the BAG3 protein, focusing on implications in tumor progression.
Abstract: Bcl2-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that interacts with the ATPase domain of the heat shock protein (Hsp) 70 through BAG domain (110–124 amino acids). BAG3 is the only member of the family to be induced by stressful stimuli, mainly through the activity of heat shock factor 1 on bag3 gene promoter. In addition to the BAG domain, BAG3 contains also a WW domain and a proline-rich (PXXP) repeat, that mediate binding to partners different from Hsp70. These multifaceted interactions underlie BAG3 ability to modulate major biological processes, that is, apoptosis, development, cytoskeleton organization and autophagy, thereby mediating cell adaptive responses to stressful stimuli. In normal cells, BAG3 is constitutively present in a very few cell types, including cardiomyocytes and skeletal muscle cells, in which the protein appears to contribute to cell resistance to mechanical stress. A growing body of evidence indicate that BAG3 is instead expressed in several tumor types. In different tumor contexts, BAG3 protein was reported to sustain cell survival, resistance to therapy, and/or motility and metastatization. In some tumor types, down-modulation of BAG3 levels was shown, as a proof-of-principle, to inhibit neoplastic cell growth in animal models. This review attempts to outline the emerging mechanisms that can underlie some of the biological activities of the protein, focusing on implications in tumor progression.

274 citations


Journal ArticleDOI
TL;DR: The data suggest that metformin has an important impact on melanoma growth, and may therefore be beneficial in patients with melanoma.
Abstract: Metformin is the most widely used antidiabetic drug because of its proven efficacy and limited secondary effects. Interestingly, recent studies have reported that metformin can block the growth of different tumor types. Here, we show that metformin exerts antiproliferative effects on melanoma cells, whereas normal human melanocytes are resistant to these metformin-induced effects. To better understand the basis of this antiproliferative effect of metformin in melanoma, we characterized the sequence of events underlying metformin action. We showed that 24 h metformin treatment induced a cell cycle arrest in G0/G1 phases, while after 72 h, melanoma cells underwent autophagy as demonstrated by electron microscopy, immunochemistry, and by quantification of the autolysosome-associated LC3 and Beclin1 proteins. In addition, 96 h post metformin treatment we observed robust apoptosis of melanoma cells. Interestingly, inhibition of autophagy by knocking down LC3 or ATG5 decreased the extent of apoptosis, and suppressed the antiproliferative effect of metformin on melanoma cells, suggesting that apoptosis is a consequence of autophagy. The relevance of these observations were confirmed in vivo, as we showed that metformin treatment impaired the melanoma tumor growth in mice, and induced autophagy and apoptosis markers. Taken together, our data suggest that metformin has an important impact on melanoma growth, and may therefore be beneficial in patients with melanoma.

268 citations


Journal ArticleDOI
TL;DR: The direct and indirect interactions between HIF-1α and p53 are described as well as the involvement in this complex network of their respective ubiquitin ligases von Hippel Lindau protein and murine double minute 2.
Abstract: When cells sense a decrease in oxygen availability (hypoxia), they develop adaptive responses in order to sustain this condition and survive. If hypoxia lasts too long or is too severe, the cells eventually die. Hypoxia is also known to modulate the p53 pathway, in a manner dependent or not of HIF-1 (hypoxia-inducible factor-1), the main transcription factor activated by hypoxia. The p53 protein is a transcription factor, which is rapidly stabilised by cellular stresses and which has a major role in the cell responses to these stresses. The aim of this review is to compile what has been reported until now about the interconnection between these two important pathways. Indeed, according to the cell line, the severity and the duration of hypoxia, oxygen deficiency influences very differently p53 protein level and activity. Conversely, p53 is also described to affect HIF-1α stability, one of the two subunits of HIF-1, and HIF-1 activity. The direct and indirect interactions between HIF-1α and p53 are described as well as the involvement in this complex network of their respective ubiquitin ligases von Hippel Lindau protein and murine double minute 2. Finally, the synergistic or antagonistic effects of p53 and HIF-1 on some important cellular pathways are discussed.

256 citations


Journal ArticleDOI
TL;DR: The roles of Polycomb proteins in stem cell biology, and the impact their misregulation can have on cancer are recapitulate.
Abstract: Polycomb group proteins have long been linked to the occurrence of different forms of cancer. Polycomb proteins form at least two distinct complexes, the Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2). Some of the PRC complex subunits have been found to be overexpressed in a variety of different tumors. Epigenetic perturbations are likely to be the cause for transcriptional misregulation of tumor suppressor genes and of certain cell fates. It is especially critical for stem cells that their potential to self-renewal and to differentiate is tightly controlled and properly orchestrated. Misregulation of Polycomb protein levels often leads to either a block or unscheduled activation of developmental pathways, thereby enhancing the proliferation capability of a cell. The consequences of this misregulation have been linked to the establishment of cancer stem cells, which can produce tumors through a combination of increased self-renewal and the lack of complete cellular differentiation. Cancer stem cells are believed to persist within tumors and to elicit relapse and metastasis. In this review, we recapitulate the roles of Polycomb proteins in stem cell biology, and the impact their misregulation can have on cancer.

245 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the NLRP3 inflammasome is not critically implicated in atherosclerosis progression in the ApoE mouse model and no differences in atheosclerosis progression, infiltration of plaques by macrophages, nor plaque stability and phenotype across the genotypes studied were found.
Abstract: The interleukin-1 (IL-1) family of cytokines has been implicated in the pathogenesis of atherosclerosis in previous studies. The NLRP3 inflammasome has recently emerged as a pivotal regulator of IL-1β maturation and secretion by macrophages. Little is currently known about a possible role for the NLRP3 inflammasome in atherosclerosis progression in vivo. We generated ApoE−/− Nlrp3−/−, ApoE−/− Asc−/− and ApoE−/− caspase-1−/− double-deficient mice, fed them a high-fat diet for 11 weeks and subsequently assessed atherosclerosis progression and plaque phenotype. No differences in atherosclerosis progression, infiltration of plaques by macrophages, nor plaque stability and phenotype across the genotypes studied were found. Our results demonstrate that the NLRP3 inflammasome is not critically implicated in atherosclerosis progression in the ApoE mouse model.

229 citations


Journal ArticleDOI
TL;DR: It was found that IFN-γ and TNF-α remained higher over the years in the serum and CNS of chronic Parkinsonian macaques than in untreated animals, accompanied by sustained glial activation (microglia and astroglia) in the substantia nigra pars compacta.
Abstract: To through light on the mechanisms underlying the stimulation and persistence of glial cell activation in Parkinsonism, we investigate the function of IFN-γ and TNF-α in experimental models of Parkinson's disease and analyze their relation with local glial cell activation. It was found that IFN-γ and TNF-α remained higher over the years in the serum and CNS of chronic Parkinsonian macaques than in untreated animals, accompanied by sustained glial activation (microglia and astroglia) in the substantia nigra pars compacta. Importantly, Parkinsonian monkeys showed persistent and increasing levels of IFN-γR signaling in both microglial and astroglial cells. In addition, experiments performed in IFN-γ and TNF-α KO mice treated with MPTP revealed that, even before dopaminergic cell death can be observed, the presence of IFN-γ and TNF-α is crucial for microglial and astroglial activation, and, together, they have an important synergistic role. Both cytokines were necessary for the full level of activation to be attained in both microglial and astroglial cells. These results demonstrate that IFN-γ signaling, together with the contribution of TNF-α, have a critical and cell-specific role in stimulating and maintaining glial cell activation in Parkinsonism.

218 citations


Journal ArticleDOI
TL;DR: It is reported here that RIP1 is a crucial mediator of canonical NF-κB activation in L929 cells, therefore questioning the relative cytoprotective contribution of RIP1 ubiquitination versus canonicalNF-κBs activation.
Abstract: TNF receptor 1 signaling induces NF-κB activation and necroptosis in L929 cells. We previously reported that cellular inhibitor of apoptosis protein-mediated receptor-interacting protein 1 (RIP1) ubiquitination acts as a cytoprotective mechanism, whereas knockdown of cylindromatosis, a RIP1-deubiquitinating enzyme, protects against tumor necrosis factor (TNF)-induced necroptosis. We report here that RIP1 is a crucial mediator of canonical NF-κB activation in L929 cells, therefore questioning the relative cytoprotective contribution of RIP1 ubiquitination versus canonical NF-κB activation. We found that attenuated NF-κB activation has no impact on TNF-induced necroptosis. However, we identified A20 and linear ubiquitin chain assembly complex as negative regulators of necroptosis. Unexpectedly, and in contrast to RIP3, we also found that knockdown of RIP1 did not block TNF cytotoxicity. Cell death typing revealed that RIP1-depleted cells switch from necroptotic to apoptotic death, indicating that RIP1 can also suppress apoptosis in L929 cells. Inversely, we observed that Fas-associated protein via a death domain, cellular FLICE inhibitory protein and caspase-8, which are all involved in the initiation of apoptosis, counteract necroptosis induction. Finally, we also report RIP1-independent but RIP3-mediated necroptosis in the context of TNF signaling in particular conditions.

Journal ArticleDOI
TL;DR: Findings support a key role of the ROS-dependent activation of an autophagic program in the synergistic growth inhibition induced by GEM/cannabinoid combination in human pancreatic cancer cells.
Abstract: Gemcitabine (GEM, 2',2'-difluorodeoxycytidine) is currently used in advanced pancreatic adenocarcinoma, with a response rate of < 20%. The purpose of our work was to improve GEM activity by addition of cannabinoids. Here, we show that GEM induces both cannabinoid receptor-1 (CB1) and cannabinoid receptor-2 (CB2) receptors by an NF-κB-dependent mechanism and that its association with cannabinoids synergistically inhibits pancreatic adenocarcinoma cell growth and increases reactive oxygen species (ROS) induced by single treatments. The antiproliferative synergism is prevented by the radical scavenger N-acetyl-L-cysteine and by the specific NF-κB inhibitor BAY 11-7085, demonstrating that the induction of ROS by GEM/cannabinoids and of NF-κB by GEM is required for this effect. In addition, we report that neither apoptotic nor cytostatic mechanisms are responsible for the synergistic cell growth inhibition, which is strictly associated with the enhancement of endoplasmic reticulum stress and autophagic cell death. Noteworthy, the antiproliferative synergism is stronger in GEM-resistant pancreatic cancer cell lines compared with GEM-sensitive pancreatic cancer cell lines. The combined treatment strongly inhibits growth of human pancreatic tumor cells xenografted in nude mice without apparent toxic effects. These findings support a key role of the ROS-dependent activation of an autophagic program in the synergistic growth inhibition induced by GEM/cannabinoid combination in human pancreatic cancer cells.

Journal ArticleDOI
TL;DR: It is demonstrated that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress, and a new vicious cycle involved in neurodegeneration is proposed that includes glutamate excitement, oxidative Stress, and mitochondrial dynamics.
Abstract: Glutamate excitotoxicity leads to fragmented mitochondria in neurodegenerative diseases, mediated by nitric oxide and S-nitrosylation of dynamin-related protein 1, a mitochondrial outer membrane fission protein. Optic atrophy gene 1 (OPA1) is an inner membrane protein important for mitochondrial fusion. Autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1, is a neurodegenerative disease affecting mainly retinal ganglion cells (RGCs). Here, we showed that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress. Opa1(enu/+) mice show a slow progressive loss of RGCs, activation of astroglia and microglia, and pronounced mitochondrial fission in optic nerve heads as found by electron tomography. Expression of NMDA receptors (NR1, 2A, and 2B) in the retina of Opa1(enu/+) mice was significantly increased as determined by western blot and immunohistochemistry. Superoxide dismutase 2 (SOD2) expression was significantly decreased, the apoptotic pathway was activated as Bax was increased, and phosphorylated Bad and BcL-xL were decreased. Our results conclusively demonstrate that not only glutamate excitotoxicity and/or oxidative stress alters mitochondrial fission/fusion, but that an imbalance in mitochondrial fission/fusion in turn leads to NMDA receptor upregulation and oxidative stress. Therefore, we propose a new vicious cycle involved in neurodegeneration that includes glutamate excitotoxicity, oxidative stress, and mitochondrial dynamics.

Journal ArticleDOI
TL;DR: Using single-cell-based observation, this work provides definitive evidence that GSCs are capable of different modes of cell division and that the generation of cellular diversity occurs mainly through symmetric cell division, not through asymmetric cell divisions.
Abstract: Malignant gliomas contain a population of self-renewing tumorigenic stem-like cells; however, it remains unclear how these glioma stem cells (GSCs) self-renew or generate cellular diversity at the single-cell level. Asymmetric cell division is a proposed mechanism to maintain cancer stem cells, yet the modes of cell division that GSCs utilize remain undetermined. Here, we used single-cell analyses to evaluate the cell division behavior of GSCs. Lineage-tracing analysis revealed that the majority of GSCs were generated through expansive symmetric cell division and not through asymmetric cell division. The majority of differentiated progeny was generated through symmetric pro-commitment divisions under expansion conditions and in the absence of growth factors, occurred mainly through asymmetric cell divisions. Mitotic pair analysis detected asymmetric CD133 segregation and not any other GSC marker in a fraction of mitoses, some of which were associated with Numb asymmetry. Under growth factor withdrawal conditions, the proportion of asymmetric CD133 divisions increased, congruent with the increase in asymmetric cell divisions observed in the lineage-tracing studies. Using single-cell-based observation, we provide definitive evidence that GSCs are capable of different modes of cell division and that the generation of cellular diversity occurs mainly through symmetric cell division, not through asymmetric cell division.

Journal ArticleDOI
TL;DR: Results provide original evidence for calpain-mediated cleavage of Beclin-1 and deregulation of basal autophagy in the rat retina that has undergone ocular ischemia/reperfusion injury and suggest a pro-survival role of the autophagic process in this neuronal cell type.
Abstract: Autophagy is the major intracellular degradation pathway that regulates long-lived proteins and organelles turnover. This process occurs at basal levels in all cells but it is rapidly upregulated in response to starvation and cellular stress. Although being recently implicated in neurodegeneration, it remains still unclear whether autophagy has a detrimental or protective role. In this study, we investigated the dynamics of the autophagic process in retinal tissue that has undergone transient ischemia, an experimental model that recapitulates features of ocular pathologies, including glaucoma, anterior ischemic optic neuropathy and retinal vessels occlusion. Retinal ischemia, induced in adult rats by increasing the intraocular pressure, was characterized by a reduction in the phosphatidylethanolamine-modified form of LC3 (LC3II) and by a significant decrease in Beclin-1. The latter event was associated with a proteolytic cleavage of Beclin-1, leading to the accumulation of a 50-kDa fragment. This event was prevented by intravitreal treatment with the non-competitive N-methyl-D-aspartate antagonist MK801 and calpain inhibitors or by calpain knockdown. Blockade of autophagy by pharmacological inhibition or Beclin-1 silencing in RGC-5 increased cell death, suggesting a pro-survival role of the autophagic process in this neuronal cell type. Altogether, our results provide original evidence for calpain-mediated cleavage of Beclin-1 and deregulation of basal autophagy in the rat retina that has undergone ocular ischemia/reperfusion injury.

Journal ArticleDOI
TL;DR: Inhibition of autophagy significantly reduced COOH-CNT-induced autophagic cell death and ameliorated acute lung injury in mice, suggesting a potential remedy to address the growing concerns on the safety of nanomaterials.
Abstract: Nanoparticles are now emerging as a novel class of autophagy activators. Functionalized single-walled carbon nanotubes (f-SWCNTs) are valuable nanomaterials in many industries. This article is designed to assess the autophagic response for f-SWCNTs exposure in vitro and in vivo. A few types of f-SWCNTs were screened in human lung adenocarcinoma A549 cells for the autophagic response and related pathways in vitro. Formation of autophagosomes and LC3-II upregulation were confirmed on the basis of electron microscopy and LC3 western blotting for COOH-CNT, but not for PABS-CNT and PEG-CNT. MTT assay showed marked increase in cell viability, when COOH-CNT was added to cells in the presence of autophagy inhibitor 3MA, ATG6 or TSC2 siRNA. Consistent with the involvement of the Akt–TSC1/2–mTOR pathway, the phosphorylation levels of mTOR, mTOR's substrate S6 and Akt were shown significantly decreased in A549 cells on treatment with COOH-CNT using western blotting. What's more, autophagy inhibitor 3MA significantly reduced the lung edema in vivo. In a word, COOH-CNT induced autophagic cell death in A549 cells through the AKT–TSC2–mTOR pathway and caused acute lung injury in vivo. Inhibition of autophagy significantly reduced COOH-CNT-induced autophagic cell death and ameliorated acute lung injury in mice, suggesting a potential remedy to address the growing concerns on the safety of nanomaterials.

Journal ArticleDOI
TL;DR: It is shown that nutlin-3 induces de novo p53 mutations not initially present in the original cell population, and cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells.
Abstract: Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines displaying a multi-drug resistance phenotype. Only 2 out of 28 sublines adapted to various cytotoxic drugs harboured p53 mutations. Nutlin-3-adapted UKF-NB-3 cells (UKF-NB-3rNutlin10 μM, harbouring a G245C mutation) were also radiation resistant. Analysis of UKF-NB-3 and UKF-NB-3rNutlin10 μM cells by RNA interference experiments and lentiviral transduction of wild-type p53 into p53-mutated UKF-NB-3rNutlin10 μM cells revealed that the loss of p53 function contributes to the multi-drug resistance of UKF-NB-3rNutlin10 μM cells. Bioinformatics PANTHER pathway analysis based on microarray measurements of mRNA abundance indicated a substantial overlap in the signalling pathways differentially regulated between UKF-NB-3rNutlin10 μM and UKF-NB-3 and between UKF-NB-3 and its cisplatin-, doxorubicin-, or vincristine-resistant sublines. Repeated nutlin-3 adaptation of neuroblastoma cells resulted in sublines harbouring various p53 mutations with high frequency. A p53 wild-type single cell-derived UKF-NB-3 clone was adapted to nutlin-3 in independent experiments. Eight out of ten resulting sublines were p53-mutated harbouring six different p53 mutations. This indicates that nutlin-3 induces de novo p53 mutations not initially present in the original cell population. Therefore, nutlin-3-treated cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells.

Journal ArticleDOI
TL;DR: Caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI) and the data suggest that casp enzyme-12 activation is independent of the unfolded protein response activated by ER stress.
Abstract: Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress.

Journal ArticleDOI
TL;DR: The age-dependent loss of proteostasis that is primarily responsible for the formation of aggregates observed in HD patients will be highlighted and the most promising molecular targets for the development of pharmacological interventions will be discussed.
Abstract: Huntington's disease (HD) is a complex and severe disorder characterized by the gradual and the progressive loss of neurons, predominantly in the striatum, which leads to the typical motor and cognitive impairments associated with this pathology. HD is caused by a highly polymorphic CAG trinucleotide repeat expansion in the exon-1 of the gene encoding for huntingtin protein. Since the first discovery of the huntingtin gene, investigations with a consistent number of in-vitro and in-vivo models have provided insights into the toxic events related to the expression of the mutant protein. In this review, we will summarize the progress made in characterizing the signaling pathways that contribute to neuronal degeneration in HD. We will highlight the age-dependent loss of proteostasis that is primarily responsible for the formation of aggregates observed in HD patients. The most promising molecular targets for the development of pharmacological interventions will also be discussed.

Journal ArticleDOI
TL;DR: This study describes for the first time that disturbance of α2β1- or α11 β1-mediated interactions to collagen I results in the cell death of MSCs and urges for further investigations examining the impact of M SCs in bone conditions with abnormal collagen I.
Abstract: Although mesenchymal stem cells (MSCs) are the natural source for bone regeneration, the exact mechanisms governing MSC crosstalk with collagen I have not yet been uncovered. Cell adhesion to collagen I is mostly mediated by three integrin receptors – α1β1, α2β1 and α11β1. Using human MSC (hMSC), we show that α11 subunit exhibited the highest basal expression levels but on osteogenic stimulation, both α2 and α11 integrins were significantly upregulated. To elucidate the possible roles of collagen-binding integrins, we applied short hairpin RNA (shRNA)-mediated knockdown in hMSC and found that α2 or α11 deficiency, but not α1, results in a tremendous reduction of hMSC numbers owing to mitochondrial leakage accompanied by Bcl-2-associated X protein upregulation. In order to clarify the signaling conveyed by the collagen-binding integrins in hMSC, we analyzed the activation of focal adhesion kinase, extracellular signal-regulated protein kinase and serine/threonine protein kinase B (PKB/Akt) kinases and detected significantly reduced Akt phosphorylation only in α2- and α11-shRNA hMSC. Finally, experiments with hMSC from osteoporotic patients revealed a significant downregulation of α2 integrin concomitant with an augmented mitochondrial permeability. In conclusion, our study describes for the first time that disturbance of α2β1- or α11β1-mediated interactions to collagen I results in the cell death of MSCs and urges for further investigations examining the impact of MSCs in bone conditions with abnormal collagen I.

Journal ArticleDOI
TL;DR: Molecular mechanisms of hERG-associated cell cycle regulation and cell death are discussed and the significance ofhERG K+ channels as future drug target in anticancer therapy is highlighted.
Abstract: The human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) has an essential role in cardiac action potential repolarization. Electrical dysfunction of the voltage-sensitive ion channel is associated with potentially lethal ventricular arrhythmias in humans. hERG K(+) channels are also expressed in a variety of cancer cells where they control cell proliferation and apoptosis. In this review, we discuss molecular mechanisms of hERG-associated cell cycle regulation and cell death. In addition, the significance of hERG K(+) channels as future drug target in anticancer therapy is highlighted.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that platelets shed microparticles not only upon activation, but also upon ageing by an apoptosis-like process (apoptosis-induced platelet microparticle, PMap).
Abstract: Platelets shed microparticles not only upon activation, but also upon ageing by an apoptosis-like process (apoptosis-induced platelet microparticles, PMap). While the activation-induced microparticles have widely been studied, not much is known about the (patho)physiological consequences of PMap formation. Flow cytometry and scanning electron microscopy demonstrated that PMap display activated integrins and interact to form microparticle aggregates. PMap were chemotactic for monocytic cells, bound to these cells, an furthermore stimulated cell adhesion and spreading on a fibronectin surface. After prolonged incubation, PMap promoted cell differentiation, but inhibited proliferation. Monocyte membrane receptor analysis revealed increased expression levels of CD11b (integrin αMβ2), CD14 and CD31 (platelet endothelial cell adhesion molecule-1), and the chemokine receptors CCR5 and CXCR4, but not of CCR2. This indicated that PMap polarized the cells into resident M2 monocytes. Cells treated with PMap actively consumed oxidized low-density lipoprotein (oxLDL), and released matrix metalloproteinases and hydrogen peroxide. Further confirmation for the differentiation towards resident professional phagocytes came from the finding that PMap stimulated the expression of the (ox)LDL receptors, CD36 and CD68, and the production of proinflammatory and immunomodulating cytokines by monocytes. In conclusion, interaction of PMap with monocytic cells has an immunomodulating potential. The apoptotic microparticles polarize the cells into a resident M2 subset, and induce differentiation to resident professional phagocytes.

Journal ArticleDOI
TL;DR: The results indicate that RGC apoptosis induced by optic nerve injury involves activation of caspase-2, and that synthetic siRNAs designed to inhibit expression of cospase- 2 represent potential neuroprotective agents for intervention in human diseases involving RGC loss.
Abstract: Retinal ganglion cell (RGC) loss after optic nerve damage is a hallmark of certain human ophthalmic diseases including ischemic optic neuropathy (ION) and glaucoma In a rat model of optic nerve transection, in which 80% of RGCs are eliminated within 14 days, caspase-2 was found to be expressed and cleaved (activated) predominantly in RGC Inhibition of caspase-2 expression by a chemically modified synthetic short interfering ribonucleic acid (siRNA) delivered by intravitreal administration significantly enhanced RGC survival over a period of at least 30 days This exogenously delivered siRNA could be found in RGC and other types of retinal cells, persisted inside the retina for at least 1 month and mediated sequence-specific RNA interference without inducing an interferon response Our results indicate that RGC apoptosis induced by optic nerve injury involves activation of caspase-2, and that synthetic siRNAs designed to inhibit expression of caspase-2 represent potential neuroprotective agents for intervention in human diseases involving RGC loss

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent kinase 9 (CDK9) and block phosphorylation of the carboxy-terminal domain of RNA polymerase II at Ser2.
Abstract: The wogonin-containing herb Scutellaria baicalensis has successfully been used for curing various diseases in traditional Chinese medicine. Wogonin has been shown to induce apoptosis in different cancer cells and to suppress growth of human cancer xenografts in vivo. However, its direct targets remain unknown. In this study, we demonstrate for the first time that wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent kinase 9 (CDK9) and block phosphorylation of the carboxy-terminal domain of RNA polymerase II at Ser2. This effect leads to reduced RNA synthesis and subsequently rapid downregulation of the short-lived anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) resulting in apoptosis induction in cancer cells. We show that genetic inhibition of Mcl-1 or CDK9 expression by siRNA is sufficient to mimic flavone-induced apoptosis. Pull-down and in silico docking studies demonstrate that wogonin directly binds to CDK9, presumably to the ATP-binding pocket. In contrast, wogonin does not inhibit CDK2, CDK4 and CDK6 at doses that inhibit CDK9 activity. Furthermore, we show that wogonin preferentially inhibits CDK9 in malignant compared with normal lymphocytes. Thus, our study reveals a new mechanism of anti-cancer action of natural flavones and supports CDK9 as a therapeutic target in oncology.

Journal ArticleDOI
TL;DR: The data suggested that ROS was the mediator ofsafingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to repair damages from ROS generation on safingol treatment.
Abstract: Safingol is a sphingolipid with promising anticancer potential, which is currently in phase I clinical trial. Yet, the underlying mechanisms of its action remain largely unknown. We reported here that safingol-induced primarily accidental necrotic cell death in MDA-MB-231 and HT-29 cells, as shown by the increase in the percentage of cells stained positive for 7-aminoactinomycin D, collapse of mitochondria membrane potential and depletion of intracellular ATP. Importantly, safingol treatment produced time- and concentration-dependent reactive oxygen species (ROS) generation. Autophagy was triggered following safingol treatment, as reflected by the formation of autophagosomes, acidic vacuoles, increased light chain 3-II and Atg biomarkers expression. Interestingly, scavenging ROS with N-acetyl-L-cysteine could prevent the autophagic features and reverse safingol-induced necrosis. Our data also suggested that autophagy was a cell repair mechanism, as suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly augmented cell death on 2-5 μM safingol treatment. In addition, Bcl-xL and Bax might be involved in the regulation of safingol-induced autophagy. Finally, glucose uptake was shown to be inhibited by safingol treatment, which was associated with an increase in p-AMPK expression. Taken together, our data suggested that ROS was the mediator of safingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to repair damages from ROS generation on safingol treatment.

Journal ArticleDOI
TL;DR: It is concluded that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI, and the effects of CM both in vivo and in vitro are evaluated.
Abstract: Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose–response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI.

Journal ArticleDOI
TL;DR: This work profiled the expression of 470 microRNAs in a cohort of 22 SS patients, and it identified 45 miRNAs differentially expressed between SS and controls, and defined a signature of 14 mi RNAs, potentially able to discriminate patients with unfavorable and favorable outcome.
Abstract: Sezary syndrome (SS) is an incurable leukemic variant of cutaneous T-cell lymphoma and its pathogenesis is still unknown. Diagnosis/prognosis may strongly ameliorate the management of SS individuals. Here, we profiled the expression of 470 microRNAs (miRNAs) in a cohort of 22 SS patients, and we identified 45 miRNAs differentially expressed between SS and controls. Using predictive analysis, a list of 19 miRNAs, including miR-21, miR-214, miR-486, miR-18a, miR-342, miR-31 and let-7 members were also found. Moreover, we defined a signature of 14 miRNAs including again miR-21, potentially able to discriminate patients with unfavorable and favorable outcome. We validated our data for miR-21, miR-214 and miR-486 by qRT-PCR, including an additional set of array-independent SS cases. In addition, we also provide an in vitro evidence for a contribution of miR-214, miR-486 and miR-21 to apoptotic resistance of CTCL cell line.

Journal ArticleDOI
TL;DR: It is suggested that controlling inflammation by inhibition of STAT1-dependent pathways in the cochlea could serve as an effective approach to treat cisplatin ototoxicity and improve the overall quality of life for cancer patients.
Abstract: Cisplatin is widely used for treating various solid tumors. However, this drug produces dose-limiting ototoxicity and nephrotoxicity, which significantly reduce the quality of life of cancer patients. While nephrotoxicity could be alleviated by diuresis, there is currently no approved treatment for hearing loss. Previous studies show that the ROS and inflammation are major contributors to cisplatin-induced hearing loss. In this study, we show that ROS trigger the inflammatory process in the cochlea by activating signal transducer and activator of transcription-1 (STAT1). Activation of STAT1 activation was dependent on ROS generation through NOX3 NADPH oxidase, knockdown of which by siRNA reduced STAT1 activation. Moreover, STAT1 siRNA protected against activation of p53, reduced apoptosis, reduced damage to OHCs and preserved hearing in rats. STAT1 siRNA attenuated the increase in inflammatory mediators, such as TNF-α, inhibition of which protected cells from cisplatin-mediated apoptosis. Finally, we showed that trans-tympanic administration of etanercept, a TNF-α antagonist, protected against OHC damage and cisplatin-induced hearing loss. These studies suggest that controlling inflammation by inhibition of STAT1-dependent pathways in the cochlea could serve as an effective approach to treat cisplatin ototoxicity and improve the overall quality of life for cancer patients.

Journal ArticleDOI
TL;DR: The role of necroptosis is explored by studying Nec-1 in immortalized striatal cells and R6/2 transgenic mouse to explore an emerging alternative cell death mediated by RIP1 kinase in Huntington's disease.
Abstract: Dear Editor, Huntington's disease (HD) is characterized clinically by movement abnormalities (i.e. chorea), psychiatric symptoms, and cognitive deficits. Mutant Huntingtin (Htt) with expanded (>36) polyQ (glutamine) repeats causes the dysfunction and death of neurons, particularly medium spiny neurons (MSNs) that account for ∼90% of striatal neurons, despite an ubiquitous expression.1, 2 The striatal neuronal death correlates with the increment of HD severity, being about ∼30% in grade 0 and ∼95% of MSNs in grade 4 patients.3 The mechanism underlying the striatal cell death remains elusive and no effective treatment is available for this fatal disease. Different from well-characterized apoptosis, necroptosis is an emerging alternative cell death mediated by RIP1 kinase.4 Necrostatin-1 (Nec-1) was recently confirmed to be an allosteric RIP1 kinase inhibitor (EC50=0.18 μM),5 protective in NMDA-mediated excitotoxicity and acute pathologies including cerebral ischemia.4 Here we explored the role of necroptosis in HD by studying Nec-1 in immortalized striatal cells and R6/2 transgenic mouse. ST14A is an immortalized striatal cell line with MSNs characteristics6 and ST14A 8plx line stably expressing mutant Htt fragment (N548-128Q) was established as a cell model of HD.7, 8 To our surprise, pan-caspases inhibitor zVAD-fmk efficiently induced ST14A 8plx cell to death, which can be almost completely rescued by Nec-1 (Figures 1a and b). Unlike apoptosis, dying striatal cells showed atrophy and shrinkage of the cell body and had no caspase-3-specific cleavage of neuronal cytoskeleton α-fodrin protein compared with the cleavage after staurosporine-induced apoptosis (Supplementary Figure S1a). Further experiments with selective caspase inhibitors revealed that caspase-8 inhibitor (IETD-fmk), but not caspase-3 (DEVD-fmk) or caspase-9 (LEHD-fmk) inhibitor, had the similar necroptosis-inducing effect as zVAD-fmk (Figures 1a and b and Supplementary Figure S1b). The zVAD-fmk or IETD-fmk inhibited RIP1 cleavage dose-dependently in striatal cells (Supplementary Figure S1c), thus facilitating RIP1 kinase activation and subsequent necroptosis, whereas Nec-1 rescued striatal cell death and restored the normal status of RIP1 cleavage in zVAD-fmk/IETD-fmk-treated cells to the similar level as untreated control cells (Figure 1c and Supplementary Figure S1d). Another necroptosis inhibitor, necrostatin-5 did not inhibit zVAD-fmk-induced striatal cell death (data not shown). Figure 1 Nec-1 inhibited RIP1 mediated necroptosis in striatal cell model of HD in vitro. (a) Addition of zVAD-fmk (20 μM) or IETD-fmk (40 μM) to ST14A 8plx cells resulted in cell death, which was inhibited by RIP1 inhibitor Nec-1 ... In response to the same dose of zVAD-fmk, ST14A 8plx cells were more vulnerable and exhibited more cell death than parental ST14A cells (Figure 1d). We also noticed that there were more full-length RIP1 proteins in 8plx cells compared with parental cells (Supplementary Figure S1e). In addition, culturing 8plx cells in serum-free medium promoted RIP1-mediated cell death following zVAD-fmk treatment (Figure 1e), but had no impact on zVAD-fmk-induced inhibition of RIP1 cleavage (Supplementary Figure S1f). We next assessed the ERK1/2 signaling and found that zVAD-fmk treatment greatly reduced the phosphorylated ERK1/2 and the effect was inhibited by Nec-1 treatment, correlating with its inhibition of necroptosis (Figure 1f). We did not observe the phosphorylation of JNK or p38 MAPK in striatal cells necroptosis (data not shown). After demonstrating that Nec-1 inhibited striatal cell necroptosis efficiently in vitro, we next evaluated the Nec-1 in well-studied R6/2 transgenic mouse model of HD, which expresses exon 1 of mutant human htt gene.9 Nec-1 can cross the blood-brain barrier easily but has a short half-life, about ∼1 h.10 So we delivered Nec-1 intracerebroventricularly with Alzet osmotic pump by neurosurgery to ensure continuous supply of the drug. The treatment was started from 5 weeks of age as we observed increased full-length RIP1 protein in R6/2 mice at this time point compared with age-matched wild-type littermates (Supplementary Figure S1g). The mouse motor function was monitored by Rotarod test at the speed of 5 and 15 r.p.m. (Figures 2a and b). The disease onset was determined when animal failed to run over 7 min at 15 r.p.m.8 Nec-1 treated mice retained much better motor performance at the age of 11 weeks (Figure 2a). The disease onset was about 78.0±4.4 days in Nec-1-treated mice (n=7) and 64.2±3.3 days in vehicle-treated ones (n=6), respectively (Figure 2c). Vehicle-treated R6/2 mice started to lose weight since 9 weeks of age whereas Nec-1-treated R6/2 mice maintained the body weight even at 11 weeks of age (Figure 2d). The curve of probability of onset of the disease clearly showed the difference with significantly delayed behavior deterioration in Nec-1 treated mice (Figure 2e, P=0.023, logrank test). The drug extended the life span of the R6/2 mice modestly (Figure 2c and f). Figure 2 Nec-1 maintains the body weight and motor function in R6/2 mouse model of HD in vivo. Behavior and disease progression data were generated from the same cohort of mice. Motor performance of R6/2 mice was evaluated by recording the time that they remained ... The zVAD-fmk is widely used as a pan-caspase inhibitor in apoptosis research. However, inhibition of death receptor (Fas/TNFR) signaling by zVAD-fmk leads to RIP1 kinase activation and subsequent necroptosis.4 The fact that necrostatin-5 can inhibit RIP1 activation induced by extrinsic death receptor signaling5 but not striatal necroptosis in our model suggests the existence of an alternative intrinsic RIP1 activation pathway in striatal cells. ST14A 8plx striatal cells are more sensitive to necroptosis, possibly due to the effect of mutant Htt on post-translational modifications of RIP1, which include phosphorylation, ubiquitination and caspase cleavage, thus tipping the intracellular balance of RIP1 protein and intrinsic kinase activation pathway(s). Of note, zVAD-fmk itself has shown cytotoxicity in non-neuronal cell lines,11 and also promotes necrosis in mitochondrial toxin MPP-treated dopaminergic neurons, which are selectively depleted in the patients' brain with Parkinson's disease (PD).12 Therefore, further studies of predisposed zVAD-fmk/IETD-fmk toxicity in striatal cells may provide useful insights into mechanisms underlying neuronal loss not only in HD, but also in other neurodegenerative diseases like PD. ERK signaling is involved in the physiological function of striatum in the neural circuitry underlying procedural learning, motor control, and reward as well as in striatal gene transcription induced by BDNF, a critical neurotrophic factor for MSNs survival.13, 14 Altered ERK signaling is also implicated in HD and activated ERK signaling is protective to MSNs in HD models in different experimental settings.7, 15, 16 This concept is further supported by our observations that Nec-1 prevented the reduction of ERK signaling and increased cell survival in zVAD-fmk-treated striatal cells. In our experiments, striatal cell necroptosis was facilitated by serum-free media, implying that unspecified serum factors inhibiting RIP1 kinase activation under necroptotic stress, and that BDNF, which is deficient in HD,2 might be one of the factors promoting necroptosis in vivo. Delaying the disease onset by Nec-1 in R6/2 mice further confirmed the involvement of RIP1 signaling in the disease pathogenesis. However, the survival benefit was modest. This discrepancy might be due to different mechanisms involved in early (necroptotic) and late (apoptotic) disease stages as apoptotic characteristics can be detected in late stage (>11 weeks) of R6/2 mouse and in grade 3 and 4 patients' brain.17 The differentiation between early and late stages of the disease is proposed due to different sensitivity of mutant striatal cells to excitotoxicity as well as the suggestion for the different treatment strategy.18 Early disease stage with necroptosis signaling might explain the extensive and early involvement of activated astrocytes in HD pathogenesis.2 In ST14A cells, treatment of Nec-1 increased the cleavage of full-length RIP1 (Figure 1c and Supplementary Figure S1d), indicating the higher basal caspase-8 activity, which might have a side effect in the late apoptotic stage of the disease in mice. As RIP1 protein is also involved in caspase-8 activation in apoptosis, the interplay of apoptosis and necroptosis is even more complicated. It was reported that Nec-1 treatment reverted necroptosis to apoptosis.19 Hence, concomitant treatment with both apoptosis and necroptosis inhibitors may have better beneficiary effect on the disease, especially regarding the development of caspase inhibitor for HD.20 Finally, as Nec-1 helped maintaining the body weight and motor functions with significantly delayed disease onset in R6/2 mouse (∼21.5%), it can be considered as a potential treatment of HD patients to ameliorate the symptoms and improve the quality of life.

Journal ArticleDOI
TL;DR: The present study shows that salinomycin in concentrations effective against CSCs exerts profound toxicity towards both dorsal root ganglia as well as Schwann cells, and improves the understanding of mechanisms involved in the pathogenesis of peripheral neuropathy.
Abstract: Salinomycin is a polyether antibiotic with properties of an ionophore, which is commonly used as cocciodiostatic drug and has been shown to be highly effective in the elimination of cancer stem cells (CSCs) both in vitro and in vivo. One important caveat for the potential clinical application of salinomycin is its marked neural and muscular toxicity. In the present study we show that salinomycin in concentrations effective against CSCs exerts profound toxicity towards both dorsal root ganglia as well as Schwann cells. This toxic effect is mediated by elevated cytosolic Na+ concentrations, which in turn cause an increase of cytosolic Ca2+ by means of Na+/Ca2+ exchangers (NCXs) in the plasma membrane as well as the mitochondria. Elevated Ca2+ then leads to calpain activation, which triggers caspase-dependent apoptosis involving caspases 12, 9 and 3. In addition, cytochrome c released from depolarized mitochondria directly activates caspase 9. Combined inhibition of calpain and the mitochondrial NCXs resulted in significantly decreased cytotoxicity and was comparable to caspase 3 inhibition. These findings improve our understanding of mechanisms involved in the pathogenesis of peripheral neuropathy and are important to devise strategies for the prevention of neurotoxic side effects induced by salinomycin.