scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Health in 2016"


Journal ArticleDOI
TL;DR: GBHs are the most heavily applied herbicide in the world and usage continues to rise; Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions and regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science.
Abstract: The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

638 citations


Journal ArticleDOI
TL;DR: By ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of tree species, location and density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.
Abstract: Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.

334 citations


Journal ArticleDOI
TL;DR: While in cities there are often silos of urban planning, mobility and transport, parks and green space, environmental department, (public) health department that do not work together well enough, multi-sectorial approaches are needed to tackle the environmental problems.
Abstract: The majority of people live in cities and urbanization is continuing worldwide. Cities have long been known to be society’s predominant engine of innovation and wealth creation, yet they are also a main source of pollution and disease. We conducted a review around the topic urban and transport planning, environmental exposures and health and describe the findings. Within cities there is considerable variation in the levels of environmental exposures such as air pollution, noise, temperature and green space. Emerging evidence suggests that urban and transport planning indicators such as road network, distance to major roads, and traffic density, household density, industry and natural and green space explain a large proportion of the variability. Personal behavior including mobility adds further variability to personal exposures, determines variability in green space and UV exposure, and can provide increased levels of physical activity. Air pollution, noise and temperature have been associated with adverse health effects including increased morbidity and premature mortality, UV and green space with both positive and negative health effects and physical activity with many health benefits. In many cities there is still scope for further improvement in environmental quality through targeted policies. Making cities ‘green and healthy’ goes far beyond simply reducing CO2 emissions. Environmental factors are highly modifiable, and environmental interventions at the community level, such as urban and transport planning, have been shown to be promising and more cost effective than interventions at the individual level. However, the urban environment is a complex interlinked system. Decision-makers need not only better data on the complexity of factors in environmental and developmental processes affecting human health, but also enhanced understanding of the linkages to be able to know at which level to target their actions. New research tools, methods and paradigms such as geographical information systems, smartphones, and other GPS devices, small sensors to measure environmental exposures, remote sensing and the exposome paradigm together with citizens observatories and science and health impact assessment can now provide this information. While in cities there are often silos of urban planning, mobility and transport, parks and green space, environmental department, (public) health department that do not work together well enough, multi-sectorial approaches are needed to tackle the environmental problems. The city of the future needs to be a green city, a social city, an active city, a healthy city.

191 citations


Journal ArticleDOI
TL;DR: The results suggest that the UHI contributed around 50 % of the total heat-related mortality during the 2003 heatwave in the West Midlands, and it is found that taking a geographical, rather than population-weighted, mean of temperature across the regions under-estimates the population exposure to temperatures by around 1 °C, roughly equivalent to a 20 % underestimation in mortality.
Abstract: The Urban Heat Island (UHI) effect describes the phenomenon whereby cities are generally warmer than surrounding rural areas. Traditionally, temperature monitoring sites are placed outside of city centres, which means that point measurements do not always reflect the true air temperature of urban centres, and estimates of health impacts based on such data may under-estimate the impact of heat on public health. Climate change is likely to exacerbate heatwaves in future, but because climate projections do not usually include the UHI, health impacts may be further underestimated. These factors motivate a two-dimensional analysis of population weighted temperature across an urban area, for heat related health impact assessments, since populations are typically densest in urban centres, where ambient temperatures are highest and the UHI is most pronounced. We investigate the sensitivity of health impact estimates to the use of population weighting and the inclusion of urban temperatures in exposure data. We quantify the attribution of the UHI to heat related mortality in the West Midlands during the heatwave of August 2003 by comparing health impacts based on two modelled temperature simulations. The first simulation is based on detailed urban land use information and captures the extent of the UHI, whereas in the second simulation, urban land surfaces have been replaced by rural types. The results suggest that the UHI contributed around 50 % of the total heat-related mortality during the 2003 heatwave in the West Midlands. We also find that taking a geographical, rather than population-weighted, mean of temperature across the regions under-estimates the population exposure to temperatures by around 1 °C, roughly equivalent to a 20 % underestimation in mortality. We compare the mortality contribution of the UHI to impacts expected from a range of projected temperatures based on the UKCP09 Climate Projections. For a medium emissions scenario, a typical heatwave in 2080 could be responsible for an increase in mortality of around 3 times the rate in 2003 (278 vs. 90 deaths) when including changes in population, population weighting and the UHI effect in the West Midlands, and assuming no change in population adaptation to heat in future.

174 citations


Journal ArticleDOI
TL;DR: Increased risks of non-accidental, circulatory, and respiratory mortality were observed even at very low concentrations of ambient PM2.5, and HRs were generally greater than most literature values, and adjusting for behavioural covariates served to reduce HR estimates slightly.
Abstract: Understanding the shape of the relationship between long-term exposure to ambient fine particulate matter (PM2.5) concentrations and health risks is critical for health impact and risk assessment. Studies evaluating the health risks of exposure to low concentrations of PM2.5 are limited. Further, many existing studies lack individual-level information on potentially important behavioural confounding factors. A prospective cohort study was conducted among a subset of participants in a cohort that linked respondents of the Canadian Community Health Survey to mortality (n = 299,500) with satellite-derived ambient PM2.5 estimates. Participants enrolled between 2000 and 2008 were followed to date of death or December 31, 2011. Cox proportional hazards models were used to estimate hazard ratios (HRs) for mortality attributed to PM2.5 exposure, adjusted for individual-level and contextual covariates, including smoking behaviour and body mass index (BMI). Approximately 26,300 non-accidental deaths, of which 32.5 % were due to circulatory disease and 9.1 % were due to respiratory disease, occurred during the follow-up period. Ambient PM2.5 exposures were relatively low (mean = 6.3 μg/m3), yet each 10 μg/m3 increase in exposure was associated with increased risks of non-accidental (HR = 1.26; 95 % CI: 1.19-1.34), circulatory disease (HR = 1.19; 95 % CI: 1.07–1.31), and respiratory disease mortality (HR = 1.52; 95 % CI: 1.26–1.84) in fully adjusted models. Higher hazard ratios were observed for respiratory mortality among respondents who never smoked (HR = 1.97; 95 % CI: 1.24–3.13 vs. HR = 1.45; 95 % CI: 1.17–1.79 for ever smokers), and among obese (BMI ≥ 30) respondents (HR = 1.76; 95 % CI: 1.15-2.69 vs. HR = 1.41; 95 % CI: 1.04–1.91 for normal weight respondents), though differences between groups were not statistically significant. A threshold analysis for non-accidental mortality estimated a threshold concentration of 0 μg/m3 (+95 % CI = 4.5 μg/m3). Increased risks of non-accidental, circulatory, and respiratory mortality were observed even at very low concentrations of ambient PM2.5. HRs were generally greater than most literature values, and adjusting for behavioural covariates served to reduce HR estimates slightly.

165 citations


Journal ArticleDOI
TL;DR: Health education materials need to clearly state health risks from lead across developmental stages and for sensitive populations, integrate a primary prevention perspective, and provide comprehensive evidence-based recommendations for reducing lead exposure in and around the home.
Abstract: This study assesses the accuracy and comprehensiveness of online public health education materials from the three Australian cities with active lead mines and or smelters: Broken Hill, Mount Isa and Port Pirie. Qualitative content analysis of online Australian material with comparison to international best practice where possible. All materials provided incomplete information about the health effects of lead and pathways of exposure compared to best practice materials. Inconsistent strategies to reduce exposure to lead were identified among the Australian cities, and some evidence-based best practices were not included. The materials normalised environmental lead and neglected to identify that there is no safe level of lead, or that primary prevention is the best strategy for protecting children’s health. Health education materials need to clearly state health risks from lead across developmental stages and for sensitive populations, integrate a primary prevention perspective, and provide comprehensive evidence-based recommendations for reducing lead exposure in and around the home. Families who rely on information provided by these online public education materials are likely to be inadequately informed about the importance of protecting their children from exposure to lead and strategies for doing so.

150 citations


Journal ArticleDOI
TL;DR: Ambient PM2.5 concentrations were significantly associated with ILI risk in Beijing at the flu season and the effect of PM21.5 differed across age groups, in Beijing, China.
Abstract: Air pollution in Beijing, especially PM2.5, has received increasing attention in the past years. Although exposure to PM2.5 has been linked to many health issues, few studies have quantified the impact of PM2.5 on the risk of influenza-like illness (ILI). The aim of our study is to investigate the association between daily PM2.5 and ILI risk in Beijing, by means of a generalized additive model. Daily PM2.5, meteorological factors, and influenza-like illness (ILI) counts during January 1, 2008 to December 31, 2014 were retrieved. An inverse Gaussian generalized additive model with log link function was used to flexibly model the nonlinear relationship between the PM2.5 (single- and multiday lagged exposure) and ILI risk, adjusted for the weather conditions, seasonal and year trends. We also assessed if the effect of PM2.5 differs during flu season versus non-flu season by including the interaction term between PM2.5 and flu season in the model. Furthermore, a stratified analysis by age groups was conducted to investigate how the effect of PM2.5 differs across age groups. Our findings suggested a strong positive relationships between PM2.5 and ILI risk at the flu season (October-April) (p-value < 0.001), after adjusting for the effects of ambient daily temperature and humidity, month and year; whereas no significant association was identified at the non-flu season (May-September) (p-value = 0.174). A short term delayed effect of PM2.5 was also identified with 2-day moving average (current day to the previous day) of PM2.5 yielding the best predictive power. Furthermore, PM2.5 was strongly associated with ILI risk across all age groups (p-value < 0.001) at the flu season, but the effect was the most pronounced among adults (age 25–59), followed by young adults (age 15–24), school children (age 5–14) and the elderly (age 60+) and the effect of PM2.5 was the least pronounced for children under 5 years of age (age < 5). Ambient PM2.5 concentrations were significantly associated with ILI risk in Beijing at the flu season and the effect of PM2.5 differed across age groups, in Beijing, China.

149 citations


Journal ArticleDOI
TL;DR: A comprehensive review of recent studies which have examined the relationship between urbanization, urban environmental changes and human health in China is provided and the challenges and opportunities for promoting the health and wellbeing of the whole nation at national, local, and individual levels are summarized.
Abstract: China has the biggest population in the world, and has been experiencing the largest migration in history, and its rapid urbanization has profound and lasting impacts on local and national public health. Under these conditions, a systems understanding on the correlation among urbanization, environmental change and public health and to devise solutions at national, local and individual levels are in urgent need. In this paper, we provide a comprehensive review of recent studies which have examined the relationship between urbanization, urban environmental changes and human health in China. Based on the review, coupled with a systems understanding, we summarize the challenges and opportunities for promoting the health and wellbeing of the whole nation at national, local, and individual levels. Urbanization and urban expansion result in urban environmental changes, as well as residents’ lifestyle change, which can lead independently and synergistically to human health problems. China has undergone an epidemiological transition, shifting from infectious to chronic diseases in a much shorter time frame than many other countries. Environmental risk factors, particularly air and water pollution, are a major contributing source of morbidity and mortality in China. Furthermore, aging population, food support system, and disparity of public service between the migrant worker and local residents are important contributions to China’s urban health. At the national level, the central government could improve current environmental policies, food safety laws, and make adjustments to the health care system and to demographic policy. At the local level, local government could incorporate healthy life considerations in urban planning procedures, make improvements to the local food supply, and enforce environmental monitoring and management. At the individual level, urban residents can be exposed to education regarding health behaviour choices while being encouraged to take responsibility for their health and to participate in environmental monitoring and management.

138 citations


Journal ArticleDOI
TL;DR: There is evidence that across a number of different settings, population susceptibility to heat and heatwaves has been decreasing, and changes in heat related susceptibility have important implications for health impact assessments of future heat related risk.
Abstract: In the context of a warming climate and increasing urbanisation (with the associated urban heat island effect), interest in understanding temperature related health effects is growing. Previous reviews have examined how the temperature-mortality relationship varies by geographical location. There have been no reviews examining the empirical evidence for changes in population susceptibility to the effects of heat and/or cold over time. The objective of this paper is to review studies which have specifically examined variations in temperature related mortality risks over the 20th and 21st centuries and determine whether population adaptation to heat and/or cold has occurred. We searched five electronic databases combining search terms for three main concepts: temperature, health outcomes and changes in vulnerability or adaptation. Studies included were those which quantified the risk of heat related mortality with changing ambient temperature in a specific location over time, or those which compared mortality outcomes between two different extreme temperature events (heatwaves) in one location. The electronic searches returned 9183 titles and abstracts, of which eleven studies examining the effects of ambient temperature over time were included and six studies comparing the effect of different heatwaves at discrete time points were included. Of the eleven papers that quantified the risk of, or absolute heat related mortality over time, ten found a decrease in susceptibility over time of which five found the decrease to be significant. The magnitude of the decrease varied by location. Only two studies attempted to quantitatively attribute changes in susceptibility to specific adaptive measures and found no significant association between the risk of heat related mortality and air conditioning prevalence within or between cities over time. Four of the six papers examining effects of heatwaves found a decrease in expected mortality in later years. Five studies examined the risk of cold. In contrast to the changes in heat related mortality observed, only one found a significant decrease in cold related mortality in later time periods. There is evidence that across a number of different settings, population susceptibility to heat and heatwaves has been decreasing. These changes in heat related susceptibility have important implications for health impact assessments of future heat related risk. A similar decrease in cold related mortality was not shown. Adaptation to heat has implications for future planning, particularly in urban areas, with anticipated increases in temperature due to climate change.

124 citations


Journal ArticleDOI
TL;DR: A significant 3-way interaction was detected with the strongest associations between PM2.5 and myocardial infarction occurring in areas with high regional OPGSH and high Oxwt (p-interaction < 0.001).
Abstract: Regional differences in the oxidative potential of fine particulate air pollution (PM2.5) may modify its impact on the risk of myocardial infarction. A case-crossover study was conducted in 16 cities in Ontario, Canada to evaluate the impact of regional PM2.5 oxidative potential on the relationship between PM2.5 and emergency room visits for myocardial infarction. Daily air pollution and meteorological data were collected between 2004 and 2011 from provincial monitoring sites and regional estimates of glutathione (OPGSH) and ascorbate-related (OPAA) oxidative potential were determined using an acellular assay based on a synthetic respiratory tract lining fluid. Exposure variables for the combined oxidant capacity of NO2 and O3 were also examined using their sum (Ox) and a weighted average (Ox wt) based on their redox potentials. In total, 30,101 cases of myocardial infarction were included in the analysis. For regions above the 90th percentile of OPGSH each 5 μg/m3 increase in same-day PM2.5 was associated with a 7.9 % (95 % CI: 4.1, 12) increased risk of myocardial infarction whereas a 4.1 % (95 % CI: 0.26, 8.0) increase was observed in regions above the 75th percentile and no association was observed below the 50th percentile (p-interaction = 0.026). A significant 3-way interaction was detected with the strongest associations between PM2.5 and myocardial infarction occurring in areas with high regional OPGSH and high Ox wt (p-interaction < 0.001). Regional PM2.5 oxidative potential may modify the impact of PM2.5 on the risk of myocardial infarction. The combined oxidant capacity of NO2 and O3 may magnify this effect.

122 citations


Journal ArticleDOI
TL;DR: Reducing motor vehicle emissions, especially from trucks and buses, could produce significant health benefits and reduce disparities in impacts and the high-spatial-resolution modeling approach could improve assessment of on-road vehicle health impacts in other cities.
Abstract: On-road vehicles are an important source of fine particulate matter (PM2.5) in cities, but spatially varying traffic emissions and vulnerable populations make it difficult to assess impacts to inform policy and the public. We estimated PM2.5-attributable mortality and morbidity from on-road vehicle generated air pollution in the New York City (NYC) region using high-spatial-resolution emissions estimates, air quality modeling, and local health incidence data to evaluate variations in impacts by vehicle class, neighborhood, and area socioeconomic status. We developed multiple ‘zero-out’ emission scenarios focused on regional and local cars, trucks, and buses in the NYC region. We simulated PM2.5 concentrations using the Community Multi-scale Air Quality Model at a 1-km spatial resolution over NYC and combined modeled estimates with monitored data from 2010 to 2012. We applied health impact functions and local health data to quantify the PM2.5-attributable health burden on NYC residents within 42 city neighborhoods. We estimate that all on-road mobile sources in the NYC region contribute to 320 (95 % Confidence Interval (CI): 220–420) deaths and 870 (95 % CI: 440–1280) hospitalizations and emergency department visits annually within NYC due to PM2.5 exposures, accounting for 5850 (95 % CI: 4020–7620) years of life lost. Trucks and buses within NYC accounted for the largest share of on-road mobile-attributable ambient PM2.5, contributing up to 14.9 % of annual average levels across 1-km grid cells, and were associated with 170 (95 % CI: 110–220) PM2.5-attributable deaths each year. These contributions were not evenly distributed, with high poverty neighborhoods experiencing a larger share of the exposure and health burden than low poverty neighborhoods. Reducing motor vehicle emissions, especially from trucks and buses, could produce significant health benefits and reduce disparities in impacts. Our high-spatial-resolution modeling approach could improve assessment of on-road vehicle health impacts in other cities.

Journal ArticleDOI
TL;DR: Where blood lead levels are high, lead is associated with decreased cognitive scores on the BSID-III, and effects of other metals are not detected, whereas in the setting of lower lead levels, the adverse effects of arsenic and manganese on neurodevelopment are observed.
Abstract: The people of Bangladesh are currently exposed to high concentrations of arsenic and manganese in drinking water, as well as elevated lead in many regions. The objective of this study was to investigate associations between environmental exposure to these contaminants and neurodevelopmental outcomes among Bangladeshi children. We evaluated data from 524 children, members of an ongoing prospective birth cohort established to study the effects of prenatal and early childhood arsenic exposure in the Sirajdikhan and Pabna Districts of Bangladesh. Water was collected from the family’s primary drinking source during the first trimester of pregnancy and at ages 1, 12 and 20–40 months. At age 20–40 months, blood lead was measured and neurodevelopmental outcomes were assessed using a translated, culturally-adapted version of the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Median blood lead concentrations were higher in Sirajdikhan than Pabna (7.6 vs.

Journal ArticleDOI
TL;DR: Positive associations between PM2.5 from wildfire and respiratory diseases are observed, supporting evidence from previous research that wildfire PM 2.5 is an important source for adverse respiratory health outcomes.
Abstract: In 2012, Colorado experienced one of its worst wildfire seasons of the past decade. The goal of this study was to investigate the relationship of local PM2.5 levels, modeled using the Weather Research and Forecasting Model with Chemistry, with emergency department visits and acute hospitalizations for respiratory and cardiovascular outcomes during the 2012 Colorado wildfires. Conditional logistic regression was used to assess the relationship between both continuous and categorical PM2.5 and emergency department visits during the wildfire period, from June 5th to July 6th 2012. For respiratory outcomes, we observed positive relationships between lag 0 PM2.5 and asthma/wheeze (1 h max OR 1.01, 95 % CI (1.00, 1.01) per 10 μg/m3; 24 h mean OR 1.04 95 % CI (1.02, 1.06) per 5 μg/m3), and COPD (1 h max OR 1.01 95 % CI (1.00, 1.02) per 10 μg/m3; 24 h mean OR 1.05 95 % CI (1.02, 1.08) per 5 μg/m3). These associations were also positive for 2-day and 3-day moving average lag periods. When PM2.5 was modeled as a categorical variable, bronchitis also showed elevated effect estimates over the referent groups for lag 0 24 h average concentration. Cardiovascular results were consistent with no association. We observed positive associations between PM2.5 from wildfire and respiratory diseases, supporting evidence from previous research that wildfire PM2.5 is an important source for adverse respiratory health outcomes.

Journal ArticleDOI
TL;DR: In this article, the first trimester maternal and cord blood plasma concentrations of several persistent organic pollutants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), polybrominated diphenyl ethers (PBDEs), and perfluoroalkyl substances (PFASs) were measured in samples from 1983 pregnant women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort.
Abstract: Pregnant women are an especially important population to monitor for environmental exposures given the vulnerability of the developing fetus. During pregnancy and lactation chemical body burdens may change due to the significant physiological changes that occur. Developmental exposures to some persistent organic pollutants (POPs) have been linked with adverse health outcomes. First trimester maternal and cord blood plasma concentrations of several POPs including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), polybrominated diphenyl ethers (PBDE)s and perfluoroalkyl substances (PFASs) were measured in samples from 1983 pregnant women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. Predictors of exposure were also identified. In maternal plasma, there was >90 % detection for the perfluoroalkyl substances (PFASs) perfluorooctanoic acid (PFOA), perfluoroctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and dichlorodiphenyldichloroethylene (DDE), oxychlordane and PCB 138 and 153. Cord blood plasma had much lower detection rates with low or very limited detection for most PCBs and PBDEs. The PFASs were the most frequently detected (23–64 %) chemical class in cord plasma. In a subset of 1st and 3rd trimester paired samples, PFAS concentrations were found to be strongly correlated and had ICCs ranging from 0.64 (PFOA) to 0.83 (PFHxS). The cord:maternal plasma concentration ratios ranged from 0.14 (PFOS) to 0.87 (oxychlordane, lipid adjusted). Similar to other studies, we found parity, maternal age, income, education, smoking status, pre-pregnancy BMI and fish consumption to be significant predictors for most chemicals. Those participants who were foreign-born had significantly higher concentrations of organochlorinated pesticides and PCBs. In the MIREC study, multiple chemical contaminants were quantified in the plasma of pregnant women. In cord plasma PFOA had the highest detection rate. However, compared to other Canadian and international population studies, the MIREC participants had lower contaminant concentrations of these substances.

Journal ArticleDOI
TL;DR: The results reflect the need to adopt stricter limits for annual mean PM2.5 levels globally, like the US standard of 12 μg/m3 or an even lower limit to substantially reduce premature mortality in most of the world.
Abstract: Air pollution by fine aerosol particles is among the leading causes of poor health and premature mortality worldwide. The growing awareness of this issue has led several countries to implement air pollution legislation. However, populations in large parts of the world are still exposed to high levels of ambient particulate pollution. The main aim of this work is to evaluate the potential impact of implementing current air quality standards for fine particulate matter (PM2.5) in the European Union (EU), United States (US) and other countries where PM2.5 levels are high. We use a high-resolution global atmospheric chemistry model combined with epidemiological concentration response functions to investigate premature mortality attributable to PM2.5 in adults ≥30 years and children <5 years. We perform sensitivity studies to estimate the reductions in mortality that could be achieved if the PM2.5 air quality standards of the EU and US and other national standards would be implemented worldwide. We estimate the global premature mortality by PM2.5 at 3.15 million/year in 2010. China is the leading country with about 1.33 million, followed by India with 575 thousand and Pakistan with 105 thousand per year. For the 28 EU member states we estimate 173 thousand and for the United States 52 thousand premature deaths in 2010. Based on sensitivity analysis, applying worldwide the EU annual mean standard of 25 μg/m3 for PM2.5 could reduce global premature mortality due to PM2.5 exposure by 17 %; while within the EU the effect is negligible. With the 2012 revised US standard of 12 μg/m3 premature mortality by PM2.5 could drop by 46 % worldwide; 4 % in the US and 20 % in the EU, 69 % in China, 49 % in India and 36 % in Pakistan. These estimates take into consideration that about 22 % of the global PM2.5 related mortality cannot be avoided due to the contribution of natural PM2.5 sources, mainly airborne desert dust and PM2.5 from wild fires. Our results reflect the need to adopt stricter limits for annual mean PM2.5 levels globally, like the US standard of 12 μg/m3 or an even lower limit to substantially reduce premature mortality in most of the world.

Journal ArticleDOI
TL;DR: These results suggest BFRs accumulate in the placenta and potentially alter TH function in a sex-specific manner, a possible mechanism to explain the sex-dependent impacts of environmental exposure on children’s growth and development.
Abstract: Brominated flame retardants (BFRs) are endocrine disruptors that bioaccumulate in the placenta, but it remains unclear if they disrupt tissue thyroid hormone (TH) metabolism. Our primary goal was to investigate associations between placental BFRs, TH levels, Type 3 deiodinase (DIO3) activity and TH sulfotransferase (SULT) activities. Placenta samples collected from 95 women who delivered term (>37 weeks) infants in Durham, NC, USA (enrolled 2010–2011) were analyzed for polybrominated diphenyl ethers (PBDEs), 2,4,6-tribromophenol (2,4,6-TBP), THs (T4, T3 and rT3), and DIO3 and TH SULT activities. PBDEs and 2,4,6-TBP were detected in all placenta samples. PBDEs were higher in placental tissues from male infants compared to female infants, with 2,4,6-TBP and BDE-209 levels approximately twice as high. Among male infants, placental BDE-99 and BDE-209 were negatively associated with rT3 placental levels. For female infants, placental BDE-99 and 2,4,6-TBP were positively associated with T3 concentrations. DIO3 activity was also significantly higher in placental tissues from male infants compared to females, while 3,3’-T2 SULT activity was significantly higher in placental tissues from females compared to males. Among males, several PBDE congeners were positively correlated with T3 SULT, while BDE-99 was negatively associated with T3 SULT among females. Associations generally remained after adjustment for potential confounding by maternal age and gestational age at delivery. These results suggest BFRs accumulate in the placenta and potentially alter TH function in a sex-specific manner, a possible mechanism to explain the sex-dependent impacts of environmental exposure on children’s growth and development. More research is needed to elucidate the effects of BFRs on placenta function during pregnancy, as well as the biological consequences of exposure and thyroid disruption.

Journal ArticleDOI
TL;DR: PM-associated increased mitochondrial oxidative DNA damage during pregnancy in both mothers and their newborns was found, showing that particulate air pollution exposure in early life plays a role in increasing systemic oxidative stress, at the level of the mitochondria, both in mother and foetus.
Abstract: Studies emphasize the importance of particulate matter (PM) in the formation of reactive oxygen species and inflammation. We hypothesized that PM exposure during different time windows in pregnancy influences mitochondrial 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, which is an established biomarker for oxidative stress, in both maternal and foetal blood. We investigated maternal (n = 224) and cord blood (n = 293) from mother-newborn pairs that were enrolled in the ENVIRONAGE birth cohort. We determined mitochondrial 8-OHdG by quantitative polymerase chain reaction (qPCR). Multivariable regression models were used to assess the association between mitochondrial 8-OHdG with PM10 and PM2.5 exposure over various time windows during pregnancy. In multivariable analysis, PM10 exposure during the entire pregnancy was positively associated with levels of mitochondrial 8-OHdG in maternal blood. For an IQR increment in PM10 exposure an increase of 18.3 % (95 % confidence interval (CI): 5.6 to 33.4 %, p = 0.004) in 8-OHdG was observed. PM10 exposure during the last trimester of pregnancy was positively associated with levels of 8-OHdG (28.1, 95 % CI: 8.6 to 51.2 %, p = 0.004, for an IQR increment in PM10). In a similar way, PM2.5 exposure was significantly associated with an increase of mitochondrial 8-OHdG levels in maternal blood during the entire pregnancy (13.9, 95 % CI: 0.4 to 29.4 %, p = 0.04 for an IQR increment in PM2.5 exposure) and third trimester of pregnancy (28.1, 95 % CI: 3.6 to 58.4 %, p = 0.02 for an IQR increment in PM2.5 exposure). In umbilical cord blood, 8-OHdG levels were significantly associated with PM10 exposure during first and second trimester of pregnancy with respectively an increase of 23.0 % (95 % CI: 5.9 to 42.8 %, p = 0.007) and 16.6 % (95 % CI: 1.8 to 33.5 %, p = 0.03) for an IQR increment in PM10 exposure. We found PM-associated increased mitochondrial oxidative DNA damage during pregnancy in both mothers and their newborns. Accordingly, our study showed that particulate air pollution exposure in early life plays a role in increasing systemic oxidative stress, at the level of the mitochondria, both in mother and foetus.

Journal ArticleDOI
TL;DR: Exposure to high levels of particulate air pollution, PM2.5, in pregnancy is associated with a 19 % increased risk of preterm birth; with greatest risk with high 3rd trimester exposure.
Abstract: Test the hypothesis that exposure to fine particulate matter in the air (PM2.5) is associated with increased risk of preterm birth (PTB). Geo-spatial population-based cohort study using live birth records from Ohio (2007–2010) linked to average daily measures of PM2.5, recorded by 57 EPA network monitoring stations across the state. Geographic coordinates of the home residence for births were linked to the nearest monitoring station using ArcGIS. Association between PTB and high PM2.5 levels (above the EPA annual standard of 15 μg/m3) was estimated using GEE, with adjustment for age, race, education, parity, insurance, tobacco, birth season and year, and infant gender. An exchangeable correlation matrix for the monitor stations was used in the models. Analyses were limited to non-anomalous singleton births at 20-42weeks with no known chromosome abnormality occurring within 10 km of a monitor station. The frequency of PTB was 8.5 % in the study cohort of 224,921 singleton live births. High PM2.5 exposure (>EPA recommended maximum) occurred frequently during the study period, with 24,662 women (11 %) having high exposure in all three trimesters. Pregnancies with high PM2.5 exposure through pregnancy had increased PTB risk even after adjustment for coexisting risk factors, adjOR 1.19 (95 % CI 1.09–1.30). Assessed per trimester, high 3rd trimester PM2.5 exposure resulted in the highest PTB risk, adjOR 1.28 (95 % CI 1.20–1.37). Exposure to high levels of particulate air pollution, PM2.5, in pregnancy is associated with a 19 % increased risk of PTB; with greatest risk with high 3rd trimester exposure. Although the risk increase associated with high PM2.5 levels is modest, the potential impact on overall PTB rates is robust as all pregnant women are potentially at risk. This exposure may in part contribute to the higher preterm birth rates in Ohio compared to other states in the US, especially in urban areas.

Journal ArticleDOI
TL;DR: A framework for the systematic review and integrated assessment (SYRINA) of EDC studies to provide the evidence base needed to support decision making, including any action to avoid/minimise potential adverse effects of exposures.
Abstract: The workshops that supported the writing of this manuscript were funded by the Swedish Foundation for Strategic Environmental Research “Mistra”. LNV was funded by Award Number K22ES025811 from the National Institute of Environmental Health Sciences of the National Institutes of Health. TJW was funded by The Clarence Heller Foundation (A123547), the Passport Foundation, the Forsythia Foundation, the National Institute of Environmental Health Sciences (grants ES018135 and ESO22841), and U.S. EPA STAR grants (RD83467801 and RD83543301). JT was funded by the Academy of Finland and Sigrid Juselius. UH was funded by the Danish EPA. KAK was funded by the Canada Research Chairs program grant number 950–230607.

Journal ArticleDOI
TL;DR: Suicide risk was positively associated with ambient air pollution levels and this finding would provide important information for the health impact assessment of air pollution and for the development of effective strategies and interventions for the prevention of suicide.
Abstract: Preventing suicide is a global imperative. Although the effects of social and individual risk factors of suicide have been widely investigated, evidence of environmental effects of exposure to air pollution is scarce. We investigated the effects of ambient air pollution on suicide mortality in Guangzhou, China during 2003−2012. A conditional logistic regression analysis with a time-stratified case-crossover design was performed to assess the effects of daily exposure to three standard air pollutants, including particulate matter less than 10 μm in aerodynamic diameter (PM10), sulphur dioxide (SO2) and nitrogen dioxide (NO2), on suicide mortality, after adjusting for the confounding effects of daily mean temperature, relative humidity, atmospheric pressure and sunshine duration. Further analyses were stratified by season, gender, age group, educational attainment and suicide type. Between 2003 and 2012, there were a total of 1 550 registered suicide deaths in Guangzhou. A significant increase in suicide risk were associated with interquartile-range increases in the concentration of air pollutant, with an odds ratio of 1.13 (95 % confidence interval (CI): 1.01, 1.27) and 1.15 (95 % CI: 1.03, 1.28) for PM10 and NO2 at lag 02, and 1.12 (95 % CI: 1.02, 1.23) for SO2 at lag 01, respectively. The suicide risks related to air pollution for males and people with high education level were higher than for females and those with low education level, respectively. Significant air pollution effects were found on violent suicide mortality and in cool season but not on non-violent suicide mortality or in warm season. Suicide risk was positively associated with ambient air pollution levels. This finding would provide important information for the health impact assessment of air pollution and for the development of effective strategies and interventions for the prevention of suicide.

Journal ArticleDOI
TL;DR: Across age groups, increase in risk for asthma hospitalization from exposure to extreme heat event during the summer months was most pronounced among youth and adults, while those related to extreme precipitation event was highest among ≤4 year olds.
Abstract: Several studies have investigated the association between asthma exacerbations and exposures to ambient temperature and precipitation. However, limited data exists regarding how extreme events, projected to grow in frequency, intensity, and duration in the future in response to our changing climate, will impact the risk of hospitalization for asthma. The objective of our study was to quantify the association between frequency of extreme heat and precipitation events and increased risk of hospitalization for asthma in Maryland between 2000 and 2012. We used a time-stratified case-crossover design to examine the association between exposure to extreme heat and precipitation events and risk of hospitalization for asthma (ICD-9 code 493, n = 115,923). Occurrence of extreme heat events in Maryland increased the risk of same day hospitalization for asthma (lag 0) by 3 % (Odds Ratio (OR): 1.03, 95 % Confidence Interval (CI): 1.00, 1.07), with a considerably higher risk observed for extreme heat events that occur during summer months (OR: 1.23, 95 % CI: 1.15, 1.33). Likewise, summertime extreme precipitation events increased the risk of hospitalization for asthma by 11 % in Maryland (OR: 1.11, 95 % CI: 1.06, 1.17). Across age groups, increase in risk for asthma hospitalization from exposure to extreme heat event during the summer months was most pronounced among youth and adults, while those related to extreme precipitation event was highest among ≤4 year olds. Exposure to extreme heat and extreme precipitation events, particularly during summertime, is associated with increased risk of hospitalization for asthma in Maryland. Our results suggest that projected increases in frequency of extreme heat and precipitation event will have significant impact on public health.

Journal ArticleDOI
TL;DR: Modelling shows that combination of controlling the indoor air sources and selecting appropriate ventilation rate was the most effective to reduce health risks, and if indoor sources cannot be removed or their emissions cannot be limited to an accepted level, ventilation needs to be increased to remove remaining pollutants.
Abstract: The annual burden of disease caused indoor air pollution, including polluted outdoor air used to ventilate indoor spaces, is estimated to correspond to a loss of over 2 million healthy life years in the European Union (EU). Based on measurements of the European Environment Agency (EEA), approximately 90 % of EU citizens live in areas where the World Health Organization (WHO) guidelines for air quality of particulate matter sized < 2.5 mm (PM2.5) are not met. Since sources of pollution reside in both indoor and outdoor air, selecting the most appropriate ventilation strategy is not a simple and straightforward task. A framework for developing European health-based ventilation guidelines was created in 2010–2013 in the EU-funded HEALTHVENT project. As a part of the project, the potential efficiency of control policies to health effects caused by residential indoor exposures of fine particulate matter (PM2.5), outdoor bioaerosols, volatile organic compounds (VOC), carbon oxide (CO) radon and dampness was estimated. The analysis was based on scenario comparison, using an outdoor-indoor mass-balance model and varying the ventilation rates. Health effects were estimated with burden of diseases (BoD) calculations taking into account asthma, cardiovascular (CV) diseases, acute toxication, respiratory infections, lung cancer and chronic obstructive pulmonary disease (COPD). The quantitative comparison of three main policy approaches, (i) optimising ventilation rates only; (ii) filtration of outdoor air; and (iii) indoor source control, showed that all three approaches are able to provide substantial reductions in the health risks, varying from approximately 20 % to 44 %, corresponding to 400 000 and 900 000 saved healthy life years in EU-26. PM2.5 caused majority of the health effects in all included countries, but the importance of the other pollutants varied by country. The present modelling shows, that combination of controlling the indoor air sources and selecting appropriate ventilation rate was the most effective to reduce health risks. If indoor sources cannot be removed or their emissions cannot be limited to an accepted level, ventilation needs to be increased to remove remaining pollutants. In these cases filtration of outdoor air may be needed to prevent increase of health risks.

Journal ArticleDOI
TL;DR: Higher concentrations of certain phthalate metabolites were associated with an increased odds of MetS for men and women and in women, the strongest association was between higher concentrations of MBzP and MetS, but only among pre-menopausal women.
Abstract: Higher exposure to certain phthalates is associated with a diabetes and insulin resistance, with sex differences seen. Yet, little is known about the association between phthalates and metabolic syndrome (MetS), particularly with consideration for differences by sex and menopausal status. We analyzed data from 2719 participants in the National Health and Nutrition Examination Survey (NHANES) 2001–2010 aged 20–80 years. Five urinary phthalate metabolites (MEP, MnBP, MiBP, MBzP, and MCPP) and DEHP metabolites were analyzed by the Centers for Disease Control and Prevention and were evaluated as population-specific quartiles. MetS was defined by National Cholesterol Education Program’s Adult Treatment Panel III report criteria. Prevalence odds ratios (POR) and 95 % confidence intervals (CI) were calculated using multivariable logistic regression, adjusting for potential confounders and stratifying by sex and menopausal status. Participants with MetS (32 % of the study population) had higher concentrations for all urinary phthalate metabolites. After full adjustment, higher DEHP metabolite concentrations were associated with an increased odds of MetS in men, but not women (adj. POR for men Q4 versus Q1: 2.20; 95 % CI: 1.32, 3.68 and adj. POR for women Q4 versus Q1: 1.50; 95 % CI: 0.89, 2.52). When evaluating by menopausal status, pre-menopausal women with higher concentrations of MBzP had close to a 4-fold increased odds of MetS compared to pre-menopausal women with the lowest concentrations of MBzP (adj POR: Q4 versus Q1: 3.88; 95 % CI: 1.59, 9.49). Higher concentrations of certain phthalate metabolites were associated with an increased odds of MetS. Higher DEHP metabolite concentrations were associated with an increased odds of MetS for men. In women, the strongest association was between higher concentrations of MBzP and MetS, but only among pre-menopausal women.

Journal ArticleDOI
TL;DR: In this article, the authors used satellite-based spatiotemporal models to estimate first and second trimester residential particulate (PM2.5) exposure and geographic information systems to estimate neighborhood traffic density.
Abstract: Rodent and human studies suggest an association between air pollution exposure and type 2 diabetes mellitus, but the extent to which air pollution is associated with gestational diabetes mellitus (GDM) is less clear. We used the Massachusetts Registry of Vital Records to study primiparous women pregnant from 2003-2008 without pre-existing diabetes. We used satellite-based spatiotemporal models to estimate first and second trimester residential particulate (PM2.5) exposure and geographic information systems to estimate neighborhood traffic density. We obtained GDM status from birth records. We performed logistic regression analyses adjusted for sociodemographics on the full cohort and after stratification by maternal age and smoking habits. Of 159,373 women, 5,381 (3.4 %) developed GDM. Residential PM2.5 exposure ranged 1.3–19.3 μg/m3 over the second trimester. None of the exposures were associated with GDM in the full cohort [e.g. OR 0.99 (95 % CI: 0.95, 1.03) for each interquartile range (IQR) increment in second trimester PM2.5]. There were also no consistent associations after stratification by smoking habits. When the cohort was stratified by maternal age, women less than 20 years had 1.36 higher odds of GDM (95 % CI: 1.08, 1.70) for each IQR increment in second trimester PM2.5 exposure. Although we found no evidence of an association between air pollution exposure and GDM among all women in our study, greater exposure to PM2.5 during the second trimester was associated with GDM in the youngest age stratum.

Journal ArticleDOI
TL;DR: Osmolality adjustment of urinary biomonitoring data provides for more robust adjustment than either creatinine based or ER or ERBW methods, the latter two of which tend to overcompensate for UFR.
Abstract: There are numerous methods for adjusting measured concentrations of urinary biomarkers for hydration variation. Few studies use objective criteria to quantify the relative performance of these methods. Our aim was to compare the performance of existing methods for adjusting urinary biomarkers for hydration variation. Creatinine, osmolality, excretion rate (ER), bodyweight adjusted ER (ERBW) and empirical analyte-specific urinary flow rate (UFR) adjustment methods on spot urinary concentrations of lead (Pb), cadmium (Cd), non-arsenobetaine arsenic (AsIMM) and iodine (I) from the US National Health and Nutrition Examination Survey (NHANES) (2009–2010 and 2011–2012) were evaluated. The data were divided into a training dataset (n = 1,723) from which empirical adjustment coefficients were derived and a testing dataset (n = 428) on which quantification of the performance of the adjustment methods was done by calculating, primarily, the correlation of the adjusted parameter with UFR, with lower correlations indicating better performance and, secondarily, the correlation of the adjusted parameters with blood analyte concentrations (Pb and Cd), with higher correlations indicating better performance. Overall performance across analytes was better for Osmolality and UFR based methods. Excretion rate and ERBW consistently performed worse, often no better than unadjusted concentrations. Osmolality adjustment of urinary biomonitoring data provides for more robust adjustment than either creatinine based or ER or ERBW methods, the latter two of which tend to overcompensate for UFR. Modified UFR methods perform significantly better than all but osmolality in removing hydration variation, but depend on the accuracy of UFR calculations. Hydration adjustment performance is analyte-specific and further research is needed to establish a robust and consistent framework.

Journal ArticleDOI
TL;DR: The results are consistent with studies showing thermal paper receipts to be an important source of exposure, point to the difficulty pregnant women have avoiding BPA exposure on an individual level, and underscore the need for changes in BPA regulation and commerce.
Abstract: Bisphenol A (BPA) is a ubiquitous, endocrine-disrupting environmental contaminant that increases risk of some adverse developmental effects. Thus, it is important to characterize BPA levels, metabolic fate and sources of exposure in pregnant women. We used an improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytic method to directly and simultaneously measure unconjugated BPA (uBPA), BPA glucuronide and BPA sulfate in the urine of a population of ethnically and racially diverse, and predominately low-income pregnant women (n = 112) in their second trimester. We also administered a questionnaire on dietary and non-dietary sources of exposure to BPA. We found universal and high exposure to uBPA and its metabolites: median concentrations were 0.25, 4.67, and 0.31 μg/g creatinine for uBPA, BPA glucuronide, and BPA sulfate, respectively. The median Total BPA (uBPA + BPA in glucuronide and sulfate forms) level was more than twice that measured in U.S. pregnant women in NHANES 2005–2006, while 30 % of the women had Total BPA levels above the 95th percentile. On average, Total BPA consisted of 71 % BPA in glucuronide form, 15 % BPA in sulfate form and 14 % uBPA, however the proportion of BPA in sulfate form increased and the proportion of uBPA decreased with Total BPA levels. Occupational and non-occupational contact with paper receipts was positively associated with BPA in conjugated (glucuronidated + sulfated) form after adjustment for demographic characteristics. Recent consumption of foods and beverages likely to be contaminated with BPA was infrequent among participants and we did not observe any positive associations with BPA analyte levels. The high levels of BPA analytes found in our study population may be attributable to the low-income status of the majority of participants and/or our direct analytic method, which yields a more complete evaluation of BPA exposure. We observed near-universal exposure to BPA among pregnant women, as well as substantial variability in BPA metabolic clearance, raising additional concerns for effects on fetal development. Our results are consistent with studies showing thermal paper receipts to be an important source of exposure, point to the difficulty pregnant women have avoiding BPA exposure on an individual level, and therefore underscore the need for changes in BPA regulation and commerce.

Journal ArticleDOI
TL;DR: A significant association between blood cadmium levels and AD mortality among older adults in the US and the Linked Mortality File is observed, suggesting that environmental exposure to Cadmium may be a risk factor for AD.
Abstract: Cadmium, a ubiquitous environmental pollutant, exhibits potential neurotoxic risk. Although compelling evidence suggests cadmium accumulation has a role in the formation of amyloid-β plaques and neurofibrillary tangles, which are the hallmarks of Alzheimer's disease (AD) pathogenesis, the supporting evidence in humans is limited and conflicting. In this study, we investigated the association between blood cadmium levels and AD mortality among older adults by analyzing the prospective data from the 1999–2004 Third National Health and Nutrition Examination Survey (NHANES) and the Linked Mortality File. The data were obtained from the 1999–2004 NHANES and the NHANES (1999–2004) Linked Mortality File. A total of 4,064 participants aged ≥60 years old with available blood cadmium data and no other missing information on their questionnaires at baseline were included in this study. AD was denoted as G30 based on the ICD-10 underlying causes of death. Of the 4,064 participants, 51 subjects died as a result of AD. Compared with participants with low blood cadmium levels (≤0.3 μg/L), those with high cadmium levels (>0.6 μg/L) exhibited a 3.83-fold (hazard ratio = 3.83; 95 % CI = 1.39–10.59) increased risk of AD mortality. In the Kaplan–Meier survival curves for cumulative AD mortality, higher levels of blood cadmium showed marginally significant association with increased mortality at baseline and in patients over 60 years of age (p = 0.0684). We observed a significant association between blood cadmium levels and AD mortality among older adults in the US. Our findings suggest that environmental exposure to cadmium may be a risk factor for AD.

Journal ArticleDOI
TL;DR: Predictive modelling of environmental and climatic drivers of WNV can be a valuable tool for public health practice and help delineate districts at risk for future transmission.
Abstract: West Nile virus (WNV) is transmitted by mosquitoes in both urban as well as in rural environments and can be pathogenic in birds, horses and humans. Extrinsic factors such as temperature and land use are determinants of WNV outbreaks in Europe, along with intrinsic factors of the vector and virus. With a multivariate model for WNV transmission we computed the probability of WNV infection in 2014, with July 2014 temperature anomalies. We applied the July temperature anomalies under the balanced A1B climate change scenario (mix of all energy sources, fossil and non-fossil) for 2025 and 2050 to model and project the risk of WNV infection in the future. Since asymptomatic infections are common in humans (which can result in the contamination of the donated blood) we estimated the predictive prevalence of WNV infections in the blood donor population. External validation of the probability model with 2014 cases indicated good prediction, based on an Area Under Curve (AUC) of 0.871 (SD = 0.032), on the Receiver Operating Characteristic Curve (ROC). The climate change projections for 2025 reveal a higher probability of WNV infection particularly at the edges of the current transmission areas (for example in Eastern Croatia, Northeastern and Northwestern Turkey) and an even further expansion in 2050. The prevalence of infection in (blood donor) populations in the outbreak-affected districts is expected to expand in the future. Predictive modelling of environmental and climatic drivers of WNV can be a valuable tool for public health practice. It can help delineate districts at risk for future transmission. These areas can be subjected to integrated disease and vector surveillance, outreach to the public and health care providers, implementation of personal protective measures, screening of blood donors, and vector abatement activities.

Journal ArticleDOI
TL;DR: LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort.
Abstract: Background Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models.

Journal ArticleDOI
TL;DR: This is the first study to describe airline pilot mental health–with a focus on depression and suicidal thoughts–outside of the information derived from aircraft accident investigations, regulated health examinations, or identifiable self-reports, which are records protected by civil aviation authorities and airline companies.
Abstract: The Germanwings Flight 9525 crash has brought the sensitive subject of airline pilot mental health to the forefront in aviation. Globally, 350 million people suffer from depression–a common mental disorder. This study provides further information on this important topic regarding mental health especially among female airline pilots. This is the first study to describe airline pilot mental health–with a focus on depression and suicidal thoughts–outside of the information derived from aircraft accident investigations, regulated health examinations, or identifiable self-reports, which are records protected by civil aviation authorities and airline companies. This is a descriptive cross-sectional study via an anonymous web-based survey administered between April and December 2015. Pilots were recruited from unions, airline companies, and airports via convenience sampling. Data analysis included calculating absolute number and prevalence of health characteristics and depression scores. One thousand eight hundred thirty seven (52.7%) of the 3485 surveyed pilots completed the survey, with 1866 (53.5%) completing at least half of the survey. 233 (12.6%) of 1848 airline pilots responding to the Patient Health Questionnaire 9 (PHQ-9), and 193 (13.5%) of 1430 pilots who reported working as an airline pilot in the last seven days at time of survey, met depression threshold–PHQ-9 total score ≥ 10. Seventy-five participants (4.1%) reported having suicidal thoughts within the past two weeks. We found a significant trend in proportions of depression at higher levels of use of sleep-aid medication (trend test z = 6.74, p < 0.001) and among those experiencing sexual harassment (z = 3.18, p = 0.001) or verbal harassment (z = 6.13, p < 0.001). Hundreds of pilots currently flying are managing depressive symptoms perhaps without the possibility of treatment due to the fear of negative career impacts. This study found 233 (12.6%) airline pilots meeting depression threshold and 75 (4.1%) pilots reporting having suicidal thoughts. Although results have limited generalizability, there are a significant number of active pilots suffering from depressive symptoms. We recommend airline organizations increase support for preventative mental health treatment. Future research will evaluate additional risk factors of depression such as sleep and circadian rhythm disturbances.