scispace - formally typeset
Search or ask a question

Showing papers in "EURASIP Journal on Advances in Signal Processing in 2012"


Journal ArticleDOI
TL;DR: A novel method for high-resolution joint direction-of-arrivals (DOA) and multi-pitch estimation based on subspaces decomposed from a spatio-temporal data model is presented, termed multi-channel harmonic MUSIC (MC-HMUSIC).
Abstract: In this article, we present a novel method for high-resolution joint direction-of-arrivals (DOA) and multi-pitch estimation based on subspaces decomposed from a spatio-temporal data model. The resulting estimator is termed multi-channel harmonic MUSIC (MC-HMUSIC). It is capable of resolving sources under adverse conditions, unlike traditional methods, for example when multiple sources are impinging on the array from approximately the same angle or similar pitches. The effectiveness of the method is demonstrated on a simulated an-echoic array recordings with source signals from real recorded speech and clarinet. Furthermore, statistical evaluation with synthetic signals shows the increased robustness in DOA and fundamental frequency estimation, as compared with to a state-of-the-art reference method.

376 citations


Journal ArticleDOI
TL;DR: EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity and suggests that the performance of muscle artifact correction methods strongly depend on the level of data contamination, and of the source configuration underlying EEG signals.
Abstract: Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artifact, as EEG is a key diagnosis tool for this pathology. In this context, our aim was to compare the ability of two stochastic approaches of blind source separation, namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to remove muscle artifacts from EEG signals. To quantitatively compare the performance of these four algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency of CCA, ICA, EMD, and WT to correct the muscular artifact was evaluated both by calculating the normalized mean-squared error between denoised and original signals and by comparing the results of source localization obtained from artifact-free as well as noisy signals, before and after artifact correction. Tests on real data recorded in an epileptic patient are also presented. The results obtained in the context of simulations and real data show that EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity. For less noisy data, and when spikes arose from a single cortical source, the myogenic artifact was best corrected with CCA and ICA. Otherwise when spikes originated from two distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while WT offered the better denoising result for less noisy data. These results suggest that the performance of muscle artifact correction methods strongly depend on the level of data contamination, and of the source configuration underlying EEG signals. Eventually, some insights into the numerical complexity of these four algorithms are given.

160 citations


Journal ArticleDOI
TL;DR: The MST led to improvements in resolution of almost twofold over the standard S-Transform in the examples presented in the article, and the advantage of using the cross-MST in the study of the connectivity between different signals using the time-frequency coherence.
Abstract: This article considers the problem of phase synchrony and coherence analysis using a modified version of the S-transform, referred to here as the Modified S-transform (MST). This is a novel and important time-frequency approach to study the phase coupling between two or more different spatially recorded entities with non-stationary characteristics. The basic method includes a cross-spectral analysis to study the phase synchrony of non-stationary signals, and relies on some properties of the MST, such as phase preservation. We demonstrate the usefulness of the technique using simulated examples and real newborn EEG data. The results show the advantage of using the cross-MST in the study of the connectivity between different signals using the time-frequency coherence. The MST led to improvements in resolution of almost twofold over the standard S-Transform in the examples presented in the article.

105 citations


PatentDOI
TL;DR: In this paper, a system and a method for assessing a condition in a subject is presented, where one or more prosodic or speech-excitation-source features of the phones are extracted, and an assessment of a condition of the subject, is generated based on a correlation between the features of phones and the condition.
Abstract: A system and a method for assessing a condition in a subject. Phones from speech of the subject are recognized, one or more prosodic or speech-excitation-source features of the phones are extracted, and an assessment of a condition of the subject, is generated based on a correlation between the features of the phones and the condition.

94 citations


Journal ArticleDOI
TL;DR: In this article, a unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited, including sampling, coding, spectral estimation, array processing, component analysis, and multipath channel estimation.
Abstract: A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, component analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing, and rate of innovation. The redundancy introduced by channel coding in finite and real Galois fields is then related to over-sampling with similar reconstruction algorithms. The error locator polynomial (ELP) and iterative methods are shown to work quite effectively for both sampling and coding applications. The methods of Prony, Pisarenko, and MUltiple SIgnal Classification (MUSIC) are next shown to be targeted at analyzing signals with sparse frequency domain representations. Specifically, the relations of the approach of Prony to an annihilating filter in rate of innovation and ELP in coding are emphasized; the Pisarenko and MUSIC methods are further improvements of the Prony method under noisy environments. The iterative methods developed for sampling and coding applications are shown to be powerful tools in spectral estimation. Such narrowband spectral estimation is then related to multi-source location and direction of arrival estimation in array processing. Sparsity in unobservable source signals is also shown to facilitate source separation in sparse component analysis; the algorithms developed in this area such as linear programming and matching pursuit are also widely used in compressed sensing. Finally, the multipath channel estimation problem is shown to have a sparse formulation; algorithms similar to sampling and coding are used to estimate typical multicarrier communication channels.

93 citations


Journal ArticleDOI
TL;DR: The experimental results compared the improved algorithm with other methods from the peak signal-to-noise ratio, mean square error, and running time, and indicate that improved algorithm is simple and effective.
Abstract: In this article, a novel image de-noising method is proposed. This method is based on spherical coordinates system. First, spherical transform is re-defined in wavelet domain, and the properties of the spherical transform in wavelet domain are listed. Then, a new adaptive threshold in spherical coordinate system is presented. It has been proved based on Besov space norm theory. After that, a novel curve shrinkage function is proposed to overcome the limitation of the traditional shrinkage functions. The new function can reach and exceed the true value and enhance the edge of the image. Finally, the multi-scale product in wavelet domain is introduced to spherical coordinates system. This article names the multi-scale product in spherical coordinates system as Multi-Scale Norm Product. The experimental results compared the improved algorithm with other methods from the peak signal-to-noise ratio, mean square error, and running time. The results indicate that improved algorithm is simple and effective.

85 citations


Journal ArticleDOI
TL;DR: The article provides deeper and more accurate analysis than can be found in the literature, including the memory complexity, on the generalization of the Goertzel algorithm, which allows it to be used for frequencies which are not integer multiples of the fundamental frequency.
Abstract: The article deals with the Goertzel algorithm, used to establish the modulus and phase of harmonic components of a signal. The advantages of the Goertzel approach over the DFT and the FFT in cases of a few harmonics of interest are highlighted, with the article providing deeper and more accurate analysis than can be found in the literature, including the memory complexity. But the main emphasis is placed on the generalization of the Goertzel algorithm, which allows us to use it also for frequencies which are not integer multiples of the fundamental frequency. Such an algorithm is derived at the cost of negligibly increasing the computational and memory complexity.

81 citations


Journal ArticleDOI
TL;DR: Space shift keying modulation is used to study a wireless communication system when multiple relays are placed between the transmitter and the receiver and both schemes perform nearly the same and the advantages and disadvantages of each are discussed.
Abstract: In this article, space shift keying (SSK) modulation is used to study a wireless communication system when multiple relays are placed between the transmitter and the receiver. In SSK, the indices of the transmit antennas form the constellation symbols and no other data symbol are transmitted. The transmitter and the receiver communicate through a direct link and the existing relays. In this study, two types of relays are considered. Conventional amplify and forward relays in which all relays amplify their received signal and forward it to the destination in a round-robin fashion. In addition, decode and forward relays in which the relays that correctly detect the source signal will forward the corresponding fading gain to the destination in pre-determined orthogonal time slots are studied. The optimum decoder for both communication systems is derived and performance analysis are conducted. The exact average bit error probability (ABEP) over Rayleigh fading channels is obtained in closed-form for a source equipped with two transmit antennas and arbitrary number of relays. Furthermore, simple and general asymptotic expression for the ABEP is derived and analyzed. Numerical results are also provided, sustained by simulations which corroborate the exactness of the theoretical analysis. It is shown that both schemes perform nearly the same and the advantages and disadvantages of each are discussed.

77 citations


Journal ArticleDOI
TL;DR: This work makes one of the first attempts to employ structural similarity (SSIM) index, a more accurate perceptual image measure, by incorporating it into the framework of sparse signal representation and approximation, and develops a gradient descent algorithm to achieve SSIM-optimal compromise in combining the input and sparse dictionary reconstructed images.
Abstract: Recently, sparse representation based methods have proven to be successful towards solving image restoration problems. The objective of these methods is to use sparsity prior of the underlying signal in terms of some dictionary and achieve optimal performance in terms of mean-squared error, a metric that has been widely criticized in the literature due to its poor performance as a visual quality predictor. In this work, we make one of the first attempts to employ structural similarity (SSIM) index, a more accurate perceptual image measure, by incorporating it into the framework of sparse signal representation and approximation. Specifically, the proposed optimization problem solves for coefficients with minimum norm and maximum SSIM index value. Furthermore, a gradient descent algorithm is developed to achieve SSIM-optimal compromise in combining the input and sparse dictionary reconstructed images. We demonstrate the performance of the proposed method by using image denoising and super-resolution methods as examples. Our experimental results show that the proposed SSIM-based sparse representation algorithm achieves better SSIM performance and better visual quality than the corresponding least square-based method.

76 citations


Journal ArticleDOI
TL;DR: DKLLE aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space.
Abstract: Given the nonlinear manifold structure of facial images, a new kernel-based supervised manifold learning algorithm based on locally linear embedding (LLE), called discriminant kernel locally linear embedding (DKLLE), is proposed for facial expression recognition. The proposed DKLLE aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. DKLLE is compared with LLE, supervised locally linear embedding (SLLE), principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), and kernel linear discriminant analysis (KLDA). Experimental results on two benchmarking facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database, demonstrate the effectiveness and promising performance of DKLLE.

73 citations


Journal ArticleDOI
TL;DR: This article proposes a novel real-time 3D hand tracking method in depth space using a 3D depth sensor and employing Kalman filter and compares the performance of the proposed method with the visual-based method.
Abstract: Hand gestures are an important type of natural language used in many research areas such as human-computer interaction and computer vision. Hand gestures recognition requires the prior determination of the hand position through detection and tracking. One of the most efficient strategies for hand tracking is to use 2D visual information such as color and shape. However, visual-sensor-based hand tracking methods are very sensitive when tracking is performed under variable light conditions. Also, as hand movements are made in 3D space, the recognition performance of hand gestures using 2D information is inherently limited. In this article, we propose a novel real-time 3D hand tracking method in depth space using a 3D depth sensor and employing Kalman filter. We detect hand candidates using motion clusters and predefined wave motion, and track hand locations using Kalman filter. To verify the effectiveness of the proposed method, we compare the performance of the proposed method with the visual-based method. Experimental results show that the performance of the proposed method out performs visual-based method.

Journal ArticleDOI
TL;DR: A likelihood model that combines appearance analysis with information from motion parallax is introduced for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera to address the main shortcomings of traditional particle filtering approaches.
Abstract: This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is defined. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.

Journal ArticleDOI
Ali Mohammad-Djafari1
TL;DR: This review article proposes to use the Bayesian inference approach for inverse problems in signal and image processing, where the authors want to infer on sparse signals or images, and considers the probabilistic models to enforce the sparsity.
Abstract: In this review article, we propose to use the Bayesian inference approach for inverse problems in signal and image processing, where we want to infer on sparse signals or images. The sparsity may be directly on the original space or in a transformed space. Here, we consider it directly on the original space (impulsive signals). To enforce the sparsity, we consider the probabilistic models and try to give an exhaustive list of such prior models and try to classify them. These models are either heavy tailed (generalized Gaussian, symmetric Weibull, Student-t or Cauchy, elastic net, generalized hyperbolic and Dirichlet) or mixture models (mixture of Gaussians, Bernoulli-Gaussian, Bernoulli-Gamma, mixture of translated Gaussians, mixture of multinomial, etc.). Depending on the prior model selected, the Bayesian computations (optimization for the joint maximum a posteriori (MAP) estimate or MCMC or variational Bayes approximations (VBA) for posterior means (PM) or complete density estimation) may become more complex. We propose these models, discuss on different possible Bayesian estimators, drive the corresponding appropriate algorithms, and discuss on their corresponding relative complexities and performances.

Journal ArticleDOI
TL;DR: A pan-sharpening technique combining both dimensionality reduction and fusion, making use of non-linear principal component analysis (NLPCA) and Indusion, respectively, to enhance the spatial resolution of a HS image is proposed.
Abstract: This article presents a novel method for the enhancement of the spatial quality of hyperspectral (HS) images through the use of a high resolution panchromatic (PAN) image. Due to the high number of bands, the application of a pan-sharpening technique to HS images may result in an increase of the computational load and complexity. Thus a dimensionality reduction preprocess, compressing the original number of measurements into a lower dimensional space, becomes mandatory. To solve this problem, we propose a pan-sharpening technique combining both dimensionality reduction and fusion, making use of non-linear principal component analysis (NLPCA) and Indusion, respectively, to enhance the spatial resolution of a HS image. We have tested the proposed algorithm on HS images obtained from CHRIS-Proba sensor and PAN image obtained from World view 2 and demonstrated that a reduction using NLPCA does not result in any significant degradation in the pan-sharpening results.

Journal ArticleDOI
TL;DR: The results obtained show that the features based on time-frequency image processing techniques such as image segmentation improve the performance of EEG abnormalities detection in the classification systems based on multi-SVM and neural network classifiers.
Abstract: This article presents a general methodology for processing non-stationary signals for the purpose of classification and localization. The methodology combines methods adapted from three complementary areas: time-frequency signal analysis, multichannel signal analysis and image processing. The latter three combine in a new methodology referred to as multichannel time-frequency image processing which is applied to the problem of classifying electroencephalogram (EEG) abnormalities in both adults and newborns. A combination of signal related features and image related features are used by merging key instantaneous frequency descriptors which characterize the signal non-stationarities. The results obtained show that, firstly, the features based on time-frequency image processing techniques such as image segmentation, improve the performance of EEG abnormalities detection in the classification systems based on multi-SVM and neural network classifiers. Secondly, these discriminating features are able to better detect the correlation between newborn EEG signals in a multichannel-based newborn EEG seizure detection for the purpose of localizing EEG abnormalities on the scalp.

Journal ArticleDOI
TL;DR: It is shown that dual-axis swallowing accelerometry signals can be accurately reconstructed even when the sampling rate is reduced to half of the Nyquist rate.
Abstract: Monitoring physiological functions such as swallowing often generates large volumes of samples to be stored and processed, which can introduce computational constraints especially if remote monitoring is desired. In this article, we propose a compressive sensing (CS) algorithm to alleviate some of these issues while acquiring dual-axis swallowing accelerometry signals. The proposed CS approach uses a time-frequency dictionary where the members are modulated discrete prolate spheroidal sequences (MDPSS). These waveforms are obtained by modulation and variation of discrete prolate spheroidal sequences (DPSS) in order to reflect the time-varying nature of swallowing acclerometry signals. While the modulated bases permit one to represent the signal behavior accurately, the matching pursuit algorithm is adopted to iteratively decompose the signals into an expansion of the dictionary bases. To test the accuracy of the proposed scheme, we carried out several numerical experiments with synthetic test signals and dual-axis swallowing accelerometry signals. In both cases, the proposed CS approach based on the MDPSS yields more accurate representations than the CS approach based on DPSS. Specifically, we show that dual-axis swallowing accelerometry signals can be accurately reconstructed even when the sampling rate is reduced to half of the Nyquist rate. The results clearly indicate that the MDPSS are suitable bases for swallowing accelerometry signals.

Journal ArticleDOI
TL;DR: The spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging and is proved universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis.
Abstract: We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. First, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the original signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Second, these results are confirmed by a numerical analysis of the phase transition of the l1-minimization problem. Finally, we show that the spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging. We illustrate these findings in the context of radio interferometry and magnetic resonance imaging.

Journal ArticleDOI
TL;DR: This article investigates the problem of deterministic pilot allocation in OFDM systems and shows that non-uniform patterns based on cyclic difference sets are optimal and performs a greedy method for finding a suboptimal solution.
Abstract: In communication systems, efficient use of the spectrum is an indispensable concern. Recently the use of compressed sensing for the purpose of estimating orthogonal frequency division multiplexing (OFDM) sparse multipath channels has been proposed to decrease the transmitted overhead in form of the pilot subcarriers which are essential for channel estimation. In this article, we investigate the problem of deterministic pilot allocation in OFDM systems. The method is based on minimizing the coherence of the submatrix of the unitary discrete fourier transform (DFT) matrix associated with the pilot subcarriers. Unlike the usual case of equidistant pilot subcarriers, we show that non-uniform patterns based on cyclic difference sets are optimal. In cases where there are no difference sets, we perform a greedy method for finding a suboptimal solution. We also investigate the performance of the recovery methods such as orthogonal matching pursuit (OMP) and iterative method with adaptive thresholding (IMAT) for estimation of the channel taps.

Journal ArticleDOI
TL;DR: There are substantial performance gains in cell-edge throughputs for both JT and DPS CoMP over the baseline Release 10 LTE-Advanced with practical feedback options and it is shown that CoMP can enable improved mobility management in real networks.
Abstract: In this article, we present a practical coordinated multipoint (CoMP) system for LTE-Advanced. In this CoMP system, cooperation is enabled for cell-edge users via dynamic switching between the normal single-cell operation and CoMP. We first formulate a general CoMP system model of several CoMP schemes. We then investigate a practical finite-rate feedback design that simultaneously supports interference coordination, joint transmission (JT), and dynamic point selection (DPS) with a varying number of cooperating transmission points while operating a single-cell transmission as a fallback mode. We provide both link-level and system-level results for the evaluation of different feedback options for general CoMP operation. The results show that there are substantial performance gains in cell-edge throughputs for both JT and DPS CoMP over the baseline Release 10 LTE-Advanced with practical feedback options. We also show that CoMP can enable improved mobility management in real networks.

Journal ArticleDOI
TL;DR: Experimental results show that the proposed algorithm is a simpler and efficient method for clarity improvement and contrast enhancement from a single foggy image, and can be comparable with the state-of-the-art methods, and even has better results than them.
Abstract: The misty, foggy, or hazy weather conditions lead to image color distortion and reduce the resolution and the contrast of the observed object in outdoor scene acquisition. In order to detect and remove haze, this article proposes a novel effective algorithm for visibility enhancement from a single gray or color image. Since it can be considered that the haze mainly concentrates in one component of the multilayer image, the haze-free image is reconstructed through haze layer estimation based on the image filtering approach using both low-rank technique and the overlap averaging scheme. By using parallel analysis with Monte Carlo simulation from the coarse atmospheric veil by the median filter, the refined smooth haze layer is acquired with both less texture and retaining depth changes. With the dark channel prior, the normalized transmission coefficient is calculated to restore fogless image. Experimental results show that the proposed algorithm is a simpler and efficient method for clarity improvement and contrast enhancement from a single foggy image. Moreover, it can be comparable with the state-of-the-art methods, and even has better results than them.

Journal ArticleDOI
TL;DR: The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Abstract: Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer’s disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.

Journal ArticleDOI
TL;DR: This article proposes a two-stage local spectrum sensing approach that shows significant improvement in sensing accuracy by exhibiting a higher probability of detection and low false alarms.
Abstract: The successful deployment of dynamic spectrum access requires cognitive radio (CR) to more accurately find the unoccupied portion of the spectrum. An accurate spectrum sensing technique can reduce the probability of false alarms and misdetection. Cooperative spectrum sensing is usually employed to achieve accuracy and improve reliability, but at the cost of cooperation overhead among CR users. This overhead can be reduced by improving local spectrum sensing accuracy. Several signal processing techniques for transmitter detection have been proposed in the literature but more sophisticated approaches are needed to enhance sensing efficiency. This article proposes a two-stage local spectrum sensing approach. In the first stage, each CR performs existing spectrum sensing techniques, i.e., energy detection, matched filter detection, and cyclostationary detection. In the second stage, the output from each technique is combined using fuzzy logic in order to deduce the presence or absence of a primary transmitter. Simulation results verify that our proposed technique outperforms existing local spectrum sensing techniques. The proposed approach shows significant improvement in sensing accuracy by exhibiting a higher probability of detection and low false alarms. The mean detection time of the proposed scheme is equivalent to that of cyclostationary detection.

Journal ArticleDOI
TL;DR: This research proposes a solution to the self-occlusion problem in S3DMM-based 3D face reconstruction by using the estimated pose as the initial pose parameter during the 3D model fitting process.
Abstract: State-of-the-art 3D morphable model (3DMM) is used widely for 3D face reconstruction based on a single image. However, this method has a high computational cost, and hence, a simplified 3D morphable model (S3DMM) was proposed as an alternative. Unlike the original 3DMM, S3DMM uses only a sparse 3D facial shape, and therefore, it incurs a lower computational cost. However, this method is vulnerable to self-occlusion due to head rotation. Therefore, we propose a solution to the self-occlusion problem in S3DMM-based 3D face reconstruction. This research is novel compared with previous works, in the following three respects. First, self-occlusion of the input face is detected automatically by estimating the head pose using a cylindrical head model. Second, a 3D model fitting scheme is designed based on selected visible facial feature points, which facilitates 3D face reconstruction without any effect from self-occlusion. Third, the reconstruction performance is enhanced by using the estimated pose as the initial pose parameter during the 3D model fitting process. The experimental results showed that the self-occlusion detection had high accuracy and our proposed method delivered a noticeable improvement in the 3D face reconstruction performance compared with previous methods.

Journal ArticleDOI
TL;DR: Diffusion adaptation is used to model the adaptation process in the presence of asymmetric nodes and noisy data and indicates that the models are able to emulate the swarming behavior of bees under varied conditions such as a small number of informed bees, sharing of target location, shares of target direction, and noisy measurements.
Abstract: Honeybees swarm when they move to a new site for their hive. During the process of swarming, their behavior can be analyzed by classifying them as informed bees or uninformed bees, where the informed bees have some information about the destination while the uninformed bees follow the informed bees. The swarm's movement can be viewed as a network of mobile nodes with asymmetric information exchange about their destination. In these networks, adaptive and mobile agents share information on the fly and adapt their estimates in response to local measurements and data shared with neighbors. Diffusion adaptation is used to model the adaptation process in the presence of asymmetric nodes and noisy data. The simulations indicate that the models are able to emulate the swarming behavior of bees under varied conditions such as a small number of informed bees, sharing of target location, sharing of target direction, and noisy measurements.

Journal ArticleDOI
TL;DR: It is shown that an audio-visual system should account for non-frontal poses and normalization techniques in terms of the weight assigned to the visual stream in the classifier, and is inspired by pose-invariant face recognition.
Abstract: In this article, we study the adaptation of visual and audio-visual speech recognition systems to non-ideal visual conditions. We focus on overcoming the effects of a changing pose of the speaker, a problem encountered in natural situations where the speaker moves freely and does not keep a frontal pose with relation to the camera. To handle these situations, we introduce a pose normalization block in a standard system and generate virtual frontal views from non-frontal images. The proposed method is inspired by pose-invariant face recognition and relies on linear regression to find an approximate mapping between images from different poses. We integrate the proposed pose normalization block at different stages of the speech recognition system and quantify the loss of performance related to pose changes and pose normalization techniques. In audio-visual experiments we also analyze the integration of the audio and visual streams. We show that an audio-visual system should account for non-frontal poses and normalization techniques in terms of the weight assigned to the visual stream in the classifier.

Journal ArticleDOI
TL;DR: The purpose of this iterative CE technique is to use the imaginary interference at the receiving side in order to improve CE.
Abstract: This article deals with channel estimation (CE) in orthogonal frequency division multiplexing (OFDM)/OQAM. After a brief presentation of the OFDM/OQAM modulation scheme, we present the CE problem in OFDM/OQAM. Indeed, OFDM/OQAM only provides real orthogonality therefore the CE technique used in cyclic prefix-OFDM cannot be applied in OFDM/OQAM context. However, some techniques based on imaginary interference cancelation have been used to perform CE in a scattered-based environment. After recalling the main idea of these techniques, we present an iterative CE technique. The purpose of this iterative method is to use the imaginary interference at the receiving side in order to improve CE.

Journal ArticleDOI
TL;DR: This article implemented this target detection algorithm based on the SSIE strategy on the hardware of a digital signal processor (DSP) to enable near real-time supervised target detection and compared the performance of hardware of DSP with that of Environment for Visualizing Images software.
Abstract: Recently, real-time image data processing is a popular research area for hyperspectral remote sensing. In particular, target detection surveillance, which is an important military application of hyperspectral remote sensing, demands real-time or near real-time processing. The massive amount of hyperspectral image data seriously limits the processing speed. In this article, a strategy named spatial-spectral information extraction (SSIE) is presented to accelerate hyperspectral image processing. SSIE is composed of band selection and sample covariance matrix estimation. Band selection fully utilizes the high-spectral correlation in spectral image, while sample covariance matrix estimation fully utilizes the high-spatial correlation in remote sensing image. To overcome the inconsistent and irreproducible shortage of random distribution, we present an effective scalar method to select sample pixels. Meanwhile, we have implemented this target detection algorithm based on the SSIE strategy on the hardware of a digital signal processor (DSP). The implementation of a constrained energy minimization algorithm is composed of hardware and software architectures. The hardware architecture contains chips and peripheral interfaces, while software architecture contains a data transferring model. In the experiments, we compared the performance of hardware of DSP with that of Environment for Visualizing Images software. DSP speed up the data processing and also results in more effective in terms of recognition rate, which demonstrate that the SSIE implemented by DSP is sufficient to enable near real-time supervised target detection.

Journal ArticleDOI
TL;DR: This article proposes to apply the statistical features of the first digits of individual alternate current modes and support vector machine to detect and locate the tampered region and shows that this method is effective for detecting three popularly used image manipulations.
Abstract: With the widespread availability of image editing software, digital images have been becoming easy to manipulate and edit even for non-professional users. For a tampered Joint Photographic Experts Group (JPEG) image, the tampered region usually has different JPEG compression history from the authentic region, which can be used to detect and locate the tampered region. In this article, we propose to apply the statistical features of the first digits of individual alternate current modes and support vector machine to detect and locate the tampered region. Experimental results show that our proposed method is effective for detecting three popularly used image manipulations. Its expectation of the percentage of overlap between the detected tampered region and the truth tampered region is higher than the existing algorithms.

Journal ArticleDOI
TL;DR: The impressive power of random measurements to capture single- and multi-image structure without explicitly searching for it is demonstrated, as the randomized measurement encoding in conjunction with the proposed manifold lifting algorithm can even outperform image-by-image transform coding.
Abstract: In this paper, we consider multi-view imaging problems in which an ensemble of cameras collect images describing a common scene. To simplify the acquisition and encoding of these images, we study the effectiveness of non-collaborative compressive sensing encoding schemes wherein each sensor directly and independently compresses its image using randomized measurements. After these measurements and also perhaps the camera positions are transmitted to a central node, the key to an accurate reconstruction is to fully exploit the joint correlation among the signal ensemble. To capture such correlations, we propose a geometric modeling framework in which the image ensemble is treated as a sampling of points from a low-dimensional manifold in the ambient signal space. Building on results that guarantee stable embeddings of manifolds under random measurements, we propose a "manifold lifting" algorithm for recovering the ensemble that can operate even without knowledge of the camera positions. We divide our discussion into two scenarios, the near-field and far-field cases, and describe how the manifold lifting algorithm could be applied to these scenarios. At the end of this paper, we present an in-depth case study of a far-field imaging scenario, where the aim is to reconstruct an ensemble of satellite images taken from different positions with limited but overlapping fields of view. In this case study, we demonstrate the impressive power of random measurements to capture single- and multi-image structure without explicitly searching for it, as the randomized measurement encoding in conjunction with the proposed manifold lifting algorithm can even outperform image-by-image transform coding.

Journal ArticleDOI
TL;DR: The study concluded that the bands difference between 660 and560 nm, division at 660 and 560 and division at 825 and 560 nm, normalized by 480 nm provide the best result, indicating the potential of Landsat ETM+ data in oil spill detection.
Abstract: Accurate knowledge of the spatial extents and distributions of an oil spill is very impor-tant for efficient response. This is because most petroleum products spread rapidly on the water surface when released into the ocean, with the majority of the affected area becoming covered by very thin sheets. This article presents a study for examining the feasibility of Landsat ETM+ images in order to detect oil spills pollutions. The Landsat ETM+ images for 1st, 10th, 17th May 2010 were used to study the oil spill in Gulf of Mexico. In this article, an attempt has been made to perform ratio operations to enhance the feature. The study concluded that the bands difference between 660 and 560 nm, division at 660 and 560 and division at 825 and 560 nm, normalized by 480 nm provide the best result. Multilayer perceptron neural network classifier is used in order to perform a pixel-based supervised classification. The result indicates the potential of Landsat ETM+ data in oil spill detection. The promising results achieved encourage a further analysis of the potential of the optical oil spill detection approach.