scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Ecology in 2017"


Journal ArticleDOI
TL;DR: In this article, the authors identified key issues including relationships between biodiversity and ecosystem function as a foundation of ecological integrity, resilience thinking to better prepare for and adapt to environmental changes, social-ecological perspectives that facilitate real-world conservation and management and theory-driven restoration that bridges science and practice.
Abstract: Summary Given the substantial contributions of forest biodiversity and ecosystem services to society, forest sciences have a large potential to contribute to the integrity and sustainability of our future. This is especially true when the roles of biodiversity for sustaining ecosystem services are considered. The rapid expansion of sustainable forest management (SFM) has resulted in the adoption of various forest management frameworks intended to safeguard biodiversity. Concurrently, the importance of forest ecosystem services has been increasingly recognized. Although some initiatives aimed at conserving both biodiversity and ecosystem services are emerging, knowledge gaps still exist about their relationships and potential trade-offs in forests. Given recent advancements, increasing opportunities and some lags in forest ecology, further research on biodiversity, ecosystem functions and services will play substantial roles in the development of SFM practices. Here, we identified key issues including (i) relationships between biodiversity and ecosystem function as a foundation of ecological integrity, (ii) resilience thinking to better prepare for and adapt to environmental changes, (iii) social–ecological perspectives that facilitate real-world conservation and management and (iv) theory-driven restoration that bridges science and practice. Thus, we illustrate priorities and future possibilities in applied ecology studies in forests, which will help society and ecosystems to build capacity and resilience to face uncertainty in the changing environment. Synthesis and applications. Under substantial human influences, forests are highly likely to be largely altered, potentially leading to the emergence of novel ecosystems or alternative stable states. Management thus needs more flexible, novel measures to address the significant uncertainty this generates. Resilience-based approaches are important to respond adaptively to future changes and cope with surprises, potentially providing multiple options. Although challenges exist, theory should play an important role in managing, conserving and restoring forest ecosystems. The issues discussed here should receive further attention in the context of the multiple goals of sustainable forest management.

275 citations


Journal ArticleDOI
TL;DR: In this paper, the authors tested if wolves select linear features and whether movement rates increased while travelling on linear features in north-eastern Alberta and northwestern Saskatchewan using 5-min GPS (Global Positioning System) locations from twenty-two wolves in six packs.
Abstract: Summary Predation by grey wolves Canis lupus has been identified as an important cause of boreal woodland caribou Rangifer tarandus caribou mortality, and it has been hypothesized that wolf use of human-created linear features such as seismic lines, pipelines and roads increases movement, resulting in higher kill rates. We tested if wolves select linear features and whether movement rates increased while travelling on linear features in north-eastern Alberta and north-western Saskatchewan using 5-min GPS (Global Positioning System) locations from twenty-two wolves in six packs. Wolves selected all but two linear feature classes, with the magnitude of selection depending on feature class and season. Wolves travelled two to three times faster on linear features compared to the natural forest. Increased average daily travelling speed while on linear features and increased proportion of steps spent travelling on linear features increased net daily movement rates, suggesting that wolf use of linear features can increase their search rate. Synthesis and applications. Our findings that wolves move faster and farther on human-created linear features can inform mitigation strategies intended to decrease predation on woodland caribou, a threatened species. Of the features that can realistically be restored, mitigation strategies such as silviculture and linear deactivation (i.e. tree-felling and fencing) should prioritize conventional seismic lines (i.e. cleared lines used for traditional oil and gas exploration) and pipelines, as they were selected by wolves and increased travelling speed, before low-impact seismic lines.

195 citations


Journal ArticleDOI
TL;DR: ES appear to be poorly quantified in many cases, as often only one side of the cascade is considered (either the ecological or socio-economic side) and oversimplified and variable indicators are often used.
Abstract: Summary Quantification of ecosystem services (ES) is an important step in operationalizing the concept for management and decision-making. With the exponential increase in ES research, ES have become a ‘catch-all phrase’, which some suggest has led to a poorly defined, impractical and ambiguous concept. An overview of the methods used in ES quantification is needed to examine their scientific rigour and provide guidelines for selecting appropriate measures. We present a systematic review of 405 peer-reviewed ES research papers to address the question: ‘Is the biophysical and socio-economic reality of ES adequately quantified? First, we considered whether ES measures are scientifically rigorous enough by considering four predefined criteria (the type of data used, quantification of uncertainty, validation done and data reported). Secondly, using a novel approach, we determined which part of the ES cascade was measured: the ecosystem property, function, service, benefit or value. Our results showed that each of the 21 ES analysed had on average 24 different measures, which may indicate the complex reality of ES and/or suggest a potential lack of consensus on what constitutes an ES. We found that uncertainty is often not included and validation mostly missing. When analysing which part(s) of the ES cascade each measure corresponded to, we found that for regulating ES, ecosystem properties and functions (ecological aspects) are more commonly quantified (67% of measures). Conversely for provisioning ES, benefits and values (socio-economic aspects) are more commonly quantified (68%). Cultural ES are predominantly quantified using scores (35%). In conclusion, ES appear to be poorly quantified in many cases, as often only one side of the cascade is considered (either the ecological or socio-economic side) and oversimplified and variable indicators are often used. Policy implications. This review provides a detailed overview of ecosystem services (ES) quantification (ranging from simple scores to advanced methods) with the aim to support future ES quantification and ultimately the successful application of the ES concept.

185 citations


Journal ArticleDOI
TL;DR: Managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades, and the broader applicability of the findings to other types of forest ecosystems merits additional investigation.
Abstract: Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.

183 citations


Journal ArticleDOI
TL;DR: The Relative Impact Potential metric combines the per capita effects of invaders with their abundances, relative to trophically analogous natives, and is successful in predicting the likelihood and degree of ecological impact caused by invasive alien species.
Abstract: Summary Predictions of the identities and ecological impacts of invasive alien species are critical for risk assessment, but presently we lack universal and standardized metrics that reliably predict the likelihood and degree of impact of such invaders (i.e. measurable changes in populations of affected species). This need is especially pressing for emerging and potential future invaders that have no invasion history. Such a metric would also ideally apply across diverse taxonomic and trophic groups. We derive a new metric of invader ecological impact that blends: (i) the classic Functional Response (FR; consumer per capita effect) and Numerical Response (NR; consumer population response) approaches to determining consumer impact, that is, the Total Response (TR = FR × NR), with; (ii) the ‘Parker–Lonsdale equation’ for invader impact, where Impact = Range × Abundance × Effect (per capita effect), into; (iii) a new metric, Relative Impact Potential (RIP), where RIP = FR × Abundance. The RIP metric is an invader/native ratio, where values >1 predict that invader ecological impact will occur, and increasing values above 1 indicate increasing impact. In addition, the invader/invader RIP ratio allows comparisons of the ecological impacts of different invaders. Across a diverse range of trophic and taxonomic groups, including predators, herbivores, animals and plants (22 invader/native systems with 47 individual comparisons), high-impact invaders were significantly associated with higher FRs compared to native trophic analogues. However, the RIP metric substantially improves this association, with 100% predictive power of high-impact invaders. Further, RIP scores were significantly and positively correlated with two independent ecological impact scores for invaders, allowing prediction of the degree of impact of invasive alien species with the RIP metric. Finally, invader/invader RIP scores were also successful in identifying and associating with higher impacting invasive alien species. Synthesis and applications. The Relative Impact Potential metric combines the per capita effects of invaders with their abundances, relative to trophically analogous natives, and is successful in predicting the likelihood and degree of ecological impact caused by invasive alien species. As the metric constitutes readily measurable features of individuals, populations and species across abiotic and biotic context-dependencies, even emerging and potential future invasive alien species can be assessed. The Relative Impact Potential metric can be rapidly utilized by scientists and practitioners and could inform policy and management of invasive alien species across diverse taxonomic and trophic groups.

175 citations


Journal ArticleDOI
TL;DR: In this article, a shift in focus from species to interaction networks is proposed to achieve pressing conservation management and restoration ecology goals of conserving biodi- versity, ecosystem processes and ultimately landscape-scale delivery of ecosystem services.
Abstract: Summary 1. Current approaches to conservation may be inadequate to maintain ecosystem integrity because they are mostly based on rarity status of organisms rather than functional signifi- cance. Alternatively, approaches focusing on the protection of ecological networks lead to more appropriate conservation targets to maintain ecosystem integrity. 2. We propose that a shift in focus from species to interaction networks is necessary to achieve pressing conservation management and restoration ecology goals of conserving biodi- versity, ecosystem processes and ultimately landscape-scale delivery of ecosystem services. 3. Using topical examples from the literature, we discuss historical and conceptual advances, current challenges and ways to move forward. We also propose a road map to ecological net- work conservation, providing a novel ready to use approach to identify clear conservation targets with flexible data requirements. 4. Synthesis and applications. Integration of how environmental and spatial constraints affect the nature and strength of local interaction networks will improve our ability to predict their response to change and to conserve them. This will better protect species, ecosystem pro- cesses, and the resulting ecosystem services we depend on.

172 citations


Journal ArticleDOI
TL;DR: This article examined the taxa and species-specific responses of five taxonomically and functionally diverse animal groups to three key attributes of urban green space vegetation that drive habitat quality and can be manipulated over time: the density of large native trees, volume of understorey vegetation and percentage of native vegetation.
Abstract: Cities are rapidly expanding world-wide and there is an increasing urgency to protect urban biodiversity, principally through the provision of suitable habitat, most of which is in urban green spaces. Despite this, clear guidelines of how to reverse biodiversity loss or increase it within a given urban green space is lacking. We examined the taxa- and species-specific responses of five taxonomically and functionally diverse animal groups to three key attributes of urban green space vegetation that drive habitat quality and can be manipulated over time: the density of large native trees, volume of understorey vegetation and percentage of native vegetation. Using multi-species occupancy-detection models, we found marked differences in the effect of these vegetation attributes on bats, birds, bees, beetles and bugs. At the taxa-level, increasing the volume of understorey vegetation and percentage of native vegetation had uniformly positive effects. We found 30-120% higher occupancy for bats, native birds, beetles and bugs with an increase in understorey volume from 10% to 30%, and 10-140% higher occupancy across all native taxa with an increase in the proportion of native vegetation from 10% to 30%. However, increasing the density of large native trees had a mostly neutral effect. At the species-specific level, the majority of native species responded strongly and positively to increasing understorey volume and native vegetation, whereas exotic bird species had a neutral response. Synthesis and applications. We found the probability of occupancy of most species examined was substantially reduced in urban green spaces with sparse understorey vegetation and few native plants. Our findings provide evidence that increasing understorey cover and native plantings in urban green spaces can improve biodiversity outcomes. Redressing the dominance of simplified and exotic vegetation present in urban landscapes with an increase in understorey vegetation volume and percentage of n

168 citations


Journal ArticleDOI
TL;DR: In this paper, a 2-year study of eighteen cover crop treatments ranging in diversity from one to eight species was conducted to explore the relationship between multifunctionality and several diversity indices.
Abstract: Summary Ecological studies identifying a positive relationship between biodiversity and ecosystem services motivate projections that higher plant diversity will increase services from agroecosystems. While this idea is compelling, evidence of generalizable relationships between biodiversity and ecosystem services that could be broadly applied in agricultural systems is lacking. Cover crops grown in rotation with cash crops are a realistic strategy to increase agroecosystem diversity. We evaluated the prediction that further increasing diversity with cover crop polycultures would enhance ecosystem services and multifunctionality in a 2-year study of eighteen cover crop treatments ranging in diversity from one to eight species. Five ecosystem services were measured in each cover crop system and regression analysis used to explore the relationship between multifunctionality and several diversity indices. As expected, there was a positive relationship between species richness and multifunctionality, but it only explained a small fraction of variance in ecosystem services (marginal R2 = 0·05). In contrast, indices of functional diversity, particularly the distribution of trait abundances, were stronger predictors of multifunctionality (marginal R2 = 0·15–0·38). Synthesis and application. In a corn production system, simply increasing cover crop species richness will have a small impact on agroecosystem services, but designing polycultures that maximize functional diversity may lead to agroecosystems with greater multifunctionality.

161 citations


Journal ArticleDOI
TL;DR: This meta-analysis indicates that less intensive tillage and cover cropping are both viable strategies for enhancing root colonization from indigenous arbuscular mycorrhizal fungi (AMF) across a wide range of soil types and cash crop species, and possibly also shifting AMF community structure, which could in turn increase biologically-based resource use in agricultural systems.
Abstract: Summary 1.Reliance on ecosystem services instead of synthetic, non-renewable inputs is increasingly seen as key to achieving food security in an environmentally sustainable way. This process, known as ecological intensification, will depend in large part on enhancing below-ground biological interactions that facilitate resource use efficiency. Arbuscular mycorrhizas (AM), associations formed between the roots of most terrestrial plant species and a specialized group of soil fungi, provide valuable ecosystem services, but the full magnitude of these services may not be fully realized under conventional intensively-managed annual agricultural systems. 2.Here we use meta-analysis to assess how reducing soil disturbance and periods without roots in agricultural systems affects the formation of AM and the diversity and community composition of arbuscular mycorrhizal fungi (AMF). We compiled data from 54 field studies across five continents that measured effects of tillage and/or cover cropping on AMF colonization and/or communities and assessed effects of management and environmental factors on these responses. 3.Less intensive tillage and winter cover cropping similarly increased AMF colonization of summer annual cash crop roots by ~30%. The key variables influencing the change in AMF colonization were the type of cover crop or the type of alternative tillage, suggesting that farmers can optimize combinations of tillage and cover crops that most enhance AM formation, particularly with no-till systems and legume cover crops. 4.Richness of AMF taxa increased by 11% in low-intensity vs. conventional tillage regimes. Several studies showed changes in diversity and community composition of AMF with cover cropping, but these responses were not consistent. 5.Synthesis and applications. This meta-analysis indicates that less intensive tillage and cover cropping are both viable strategies for enhancing root colonization from indigenous arbuscular mycorrhizal fungi (AMF) across a wide range of soil types and cash crop species, and possibly also shifting AMF community structure, which could in turn increase biologically-based resource use in agricultural systems. This article is protected by copyright. All rights reserved.

155 citations


Journal ArticleDOI
TL;DR: In this paper, the authors applied a forest dynamic model in case study areas of four European mountain regions and evaluated the future supply of four ecosystem services (e.g., timber production, carbon sequestration, biodiversity and protection against natural hazards) using state-of-the-art ES indicators.
Abstract: Summary 1.Ecosystem services (ES) from mountain forests are highly relevant for human societies. ES with a direct economic support function (e.g. timber production), regulatory services (e.g. protection from natural hazards) and cultural services (e.g. recreation) are likely to be affected strongly by a rapidly changing climate. To evaluate whether adverse climate change effects on ES can be counteracted by adapting management, dynamic models and indicator-based assessments are needed. 2.We applied a forest dynamic model in case study areas of four European mountain regions and evaluated the future supply of four ES - timber production, carbon sequestration, biodiversity, and protection against natural hazards - using state-of-the-art ES indicators. Forest dynamics were simulated under three management scenarios (no management, business-as-usual, and alternative management) and five climate change projections for selected representative stand types in each region. We analysed potential trade-offs and synergies between ES, and evaluated future changes among regions, forest stands, climate and management scenarios. 3.Impacts of climate change on the provision of multiple ES were found to be highly heterogeneous and to depend on the region, site, and future climate. In the absence of large-scale natural disturbance (not considered), protection services, carbon stock and deadwood abundance (proxy for biodiversity) benefitted from no management in all regions. Negative impacts of climate change were evident for the provision of multiple ES but limited to the most severe climate scenarios and low-elevation stands. Synergies and trade-offs between the majority of ES were found to be sensitive to the choice of management strategy and – in some regions – to climate change. 4.Synthesis and applications. Management regimes in European mountain forests should be regionally adapted to stand and site conditions. Although in some cases alternative management regimes may be more suitable than current management for supporting multiple ecosystem services, adaptation options should be evaluated carefully at the local scale due to the highly different magnitude of the impacts of climate change in different regions and along elevation gradients. This article is protected by copyright. All rights reserved.

142 citations


Journal ArticleDOI
TL;DR: A synthesis of tree traits and associated abiotic variables that can be used to predict drought-induced mortality is compiled to assist ecologists and natural resource managers choose appropriate and measurable parameters for predicting local and regional scale tree mortality risk in different climatic zones within constraints of time and funding availability.
Abstract: 1. Forest dieback caused by drought-induced tree mortality has been observed world-wide. Forecasting which trees in which locations are vulnerable to drought-induced mortality is important to predict the consequences of drought on forest structure, biodiversity and ecosystem function. 2. In this paper, our central aim was to compile a synthesis of tree traits and associated abiotic variables that can be used to predict drought-induced mortality. We reviewed the literature that specifically links drought mortality to functional traits and site conditions (i.e. edaphic variables and biotic conditions), targeting studies that show clear use of tree traits in drought analysis. We separated the review into five climatic zones to determine global vs. regionally restricted relationships between traits and mortality. 3. Our synthesis identifies a number of traits that have clear relationships with drought-induced mortality (e.g. wood density at the species level and tree size and growth at the individual level). However, the lack of direct relationships between most traits and drought-induced mortality highlights areas where future research should focus to broaden our understanding. 5. Synthesis and applications. Our synthesis highlights established relationships between traits and drought-induced mortality, presents knowledge gaps for future research focus and suggests monitoring and research avenues for improving our understanding of drought-induced mortality. It is intended to assist ecologists and natural resource managers choose appropriate and measurable parameters for predicting local and regional scale tree mortality risk in different climatic zones within constraints of time and funding availability.

Journal ArticleDOI
TL;DR: Reintroduction of AM fungi from reference prairie environments could improve restoration outcomes by promoting plant diversity and richness, especially for desirable later successional plant species, while simultaneously inhibiting less desirable weedy plants.
Abstract: Summary 1.Because soil microbial communities are often altered by anthropogenic disturbance, successful plant community restoration may require the restoration of beneficial soil microbes, such as arbuscular mycorrhizal (AM) fungi. Recent evidence suggests that later successional grassland species are more strongly affected by AM fungi relative to early successional plants and that late successional plants consistently benefit from some AM fungi but not other AM fungal species. Many of these late successional species are also often missing in restorations despite being heavily seeded. 2.To assess the effects of AM fungal composition within grassland restorations, we inoculated plots with six different AM fungal community treatments including one of four different AM fungal species isolated from a prairie, a mixture of all four fungal species, and a non-inoculated control. AM fungi were introduced by planting sixteen different inoculated nurse plants into replicated plots. We also seeded the restoration with a diverse, 54-species prairie seed mixture. 3.We found that AM fungal inoculation drove plant community composition; plots inoculated with certain AM fungal treatments were dominated by desirable prairie plants whereas plots inoculated with other AM fungal species and the non-inoculated control were dominated by non-desirable plants including weeds and exotic species. Specifically, we found that many early successional species established well regardless of AM fungal inoculation, while the establishment and growth of many late successional species was strongly dependent on the presence of specific AM fungal species. Many conservative late successional species did not occur without inoculation. Overall, total plant community richness, diversity, and floristic quality index were all significantly improved with AM fungal inoculation, whereas we observed that non-desirable plant abundance was significantly greater in the non-inoculated plots. 4.Synthesis and applications. Our results suggest that the lack of late successional establishment reported in many previous restorations may be due to ineffective arbuscular mycorrhizal (AM) fungal communities at these sites. We conclude that the reintroduction of AM fungi from reference prairie environments could improve restoration outcomes by promoting plant diversity and richness, especially for desirable later successional plant species, while simultaneously inhibiting less desirable weedy plants. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: The results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect, highlighting that intensifying disturbance regimes may alleviate some of the impacts of climate change on forest biodiversity.
Abstract: 1. The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species. Here, we (i) investigated the potential long-term effect of climate change on biodiversity in a mountain forest landscape, (ii) assessed the effects of different disturbance frequencies, severities and sizes and (iii) identified biodiversity hotspots at the landscape scale to facilitate conservation management. 2. We employed the model iLand to dynamically simulate the tree vegetation on 13 865 ha of the Kalkalpen National Park in Austria over 1000 years, and investigated 36 unique combinations of different disturbance and climate scenarios. We used simulated changes in tree cover and composition as well as projected temperature and precipitation to predict changes in the diversity of Araneae, Carabidae, ground vegetation, Hemiptera, Hymenoptera, Mollusca, saproxylic beetles, Symphyta and Syrphidae, using empirical response functions. 3. Our findings revealed widely varying responses of biodiversity indicators to climate change. Five indicators showed overall negative effects, with Carabidae, saproxylic beetles and tree species diversity projected to decrease by more than 33%. Six indicators responded positively to climate change, with Hymenoptera, Mollusca and Syrphidae diversity projected to increase more than twofold. 4. Disturbances were generally beneficial for the studied indicators of biodiversity. Our results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect. Spatial hotspots of biodiversity were currently found in low- to mid-elevation areas of the mountainous study landscape, but shifted to higher-elevation zones under changing climate conditions. 5.Synthesis and applications. Our results highlight that intensifying disturbance regimes may alleviate some of the impacts of climate change on forest biodiversity. However, the projected shift in biodiversity hotspots is a challenge for static conservation areas. In this regard, overlapping hotspots under current and expected future conditions highlight priority areas for robust conservation management.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a satellite-telemetry-based habitat model in a case-control design for Eastern North Pacific blue whales Balaenoptera musculus that was combined with previously published abundance estimates to predict habitat preference and densities.
Abstract: Summary Management of highly migratory species is reliant on spatially and temporally explicit information on their distribution and abundance. Satellite telemetry provides time-series data on individual movements. However, these data are underutilized in management applications in part because they provide presence-only information rather than abundance information such as density. Eastern North Pacific blue whales are listed as threatened, and ship strikes have been suggested as a key factor limiting their recovery. Here, we developed a satellite-telemetry-based habitat model in a case–control design for Eastern North Pacific blue whales Balaenoptera musculus that was combined with previously published abundance estimates to predict habitat preference and densities. Further, we operationalize an automated, near-real-time whale density prediction tool based on up-to-date environmental data for use by managers and other stakeholders. A switching state-space movement model was applied to 104 blue whale satellite tracks from 1994 to 2008 to account for errors in the location estimates and provide daily positions (case points). We simulated positions using a correlated random walk model (control points) and sampled the environment at each case and control point. Generalized additive mixed models and boosted regression trees were applied to determine the probability of occurrence based on environmental covariates. Models were used to predict 8-day and monthly resolution, year-round density estimates scaled by population abundance estimates that provide a critical tool for understanding seasonal and interannual changes in habitat use. The telemetry-based habitat model predicted known blue whale hot spots and had seasonal agreement with sightings data, highlighting the skill of the model for predicting blue whale habitat preference and density. We identified high interannual variability in occurrence emphasizing the benefit of dynamic models compared to multiyear averages. Synthesis and applications. This near-real-time tool allows a more accurate examination of the year-round spatio-temporal overlap of blue whales with potentially harmful human activities, such as shipping. This approach should also be applicable to other species for which sufficient telemetry data are available. The dynamic predictive product developed here is an important tool that allows managers to consider finer-scale management areas that are more economically feasible and socially acceptable.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the variability of restoration outcomes and the causes of this variability, and propose that the variability should decrease with the number of factors constraining restoration and increase with the specificity of the goal.
Abstract: Summary Ecological restoration is a global priority that holds great potential for benefiting natural ecosystems, but restoration outcomes are notoriously unpredictable. Resolving this unpredictability represents a major, but critical challenge to the science of restoration ecology. In an effort to move restoration ecology toward a more predictive science, we consider the key issue of variability. Typically, restoration outcomes vary relative to goals (i.e. reference or desired future conditions) and with respect to the outcomes of other restoration efforts. The field of restoration ecology has largely considered only this first type of variation, often focusing on an oversimplified success vs. failure dichotomy. The causes of variation, particularly among restoration efforts, remain poorly understood for most systems. Variation associated with restoration outcomes is a consequence of how, where and when restoration is conducted; variation is also influenced by how the outcome of restoration is measured. We propose that variation should decrease with the number of factors constraining restoration and increase with the specificity of the goal. When factors (e.g. harsh environmental conditions, limited species reintroductions) preclude most species, little variation will exist among restorations, particularly when goals are associated with metrics such as physical structure, where species may be broadly interchangeable. Conversely, when few constraints to species membership exist, substantial variation may result and this will be most pronounced when restoration is assessed by metrics such as taxonomic composition. Synthesis and applications. The variability we observe during restoration results from both restoration context (how, where and when restoration is conducted) and how we evaluate restoration outcomes. To advance the predictive capacity of restoration, we outline a research agenda that considers metrics of restoration outcomes, the drivers of variation among existing restoration efforts, experiments to quantify and understand variation in restoration outcomes, and the development of models to organise, interpret and forecast restoration outcomes.

Journal ArticleDOI
TL;DR: In this article, the potential of the boreal landscape to provide harvest revenues, store carbon and maintain biodiversity across a 50-year time period was estimated, and the authors applied multiobjective optimization to identify the trade-offs between these three objectives and identify the optimal combination of forest management regimes to achieve these objectives.
Abstract: Summary The boreal biome, representing approximately one-third of remaining global forests, provides a number of crucial ecosystem services. A particular challenge in forest ecosystems is to reconcile demand for an increased timber production with provisioning of other ecosystem services and biodiversity. However, there is still little knowledge about how forest management could help solve this challenge. Hence, studies that investigate how to manage forests to reduce trade-offs between ecosystem services and biodiversity are urgently needed to help forest owners and policy makers take informed decisions. We applied seven alternative forest management regimes using a forest growth simulator in a large boreal forest production landscape. First, we estimated the potential of the landscape to provide harvest revenues, store carbon and maintain biodiversity across a 50-year time period. Then, we applied multiobjective optimization to identify the trade-offs between these three objectives and to identify the optimal combination of forest management regimes to achieve these objectives. It was not possible to achieve high levels of either carbon storage or biodiversity if the objective of forest management was to maximize timber harvest revenues. Moreover, conflicts between biodiversity and carbon storage became stronger when simultaneously targeting high levels of timber revenues. However, with small reductions in timber revenues, it was possible to greatly increase the multifunctionality of the landscape, especially the biodiversity indicators. Forest management actions, alternative to business-as-usual management, such as reducing thinnings, extending the rotation period and increasing the amount of area set aside from forestry may be necessary to safeguard biodiversity and non-timber ecosystem services in Fennoscandia. Synthesis and applications. Our results show that no forest management regime alone is able to maximize timber revenues, carbon storage and biodiversity individually or simultaneously and that a combination of different regimes is needed to resolve the conflicts among these objectives. We conclude that it is possible to reduce the trade-offs between different objectives by applying diversified forest management planning at the boreal landscape level and that we need to give up the all-encompassing objective of very intensive timber production, which is prevailing particularly in Fennoscandian countries.

Journal ArticleDOI
TL;DR: The results suggest that both trait composition and environmental conditions play a role in shaping ecosystem function during restoration, and the importance of each is dependent on the function of interest.
Abstract: Summary Recovering biological diversity and ecosystem functioning are primary objectives of ecological restoration, yet these outcomes are often unpredictable. Assessments based on functional traits may help with interpreting variability in both community composition and ecosystem functioning because of their mechanistic and generalizable nature. This promise remains poorly realized, however, because tests linking environmental conditions, functional traits, and ecosystem functioning in restoration are rare. Here, we provide such a test through what is to our knowledge the first empirical application of the ‘response–effect trait framework’ to restoration. This framework provides a trait-based bridge between community assembly and ecosystem functioning by describing how species respond to environmental conditions based on traits and how the traits of species affect ecosystem functioning. Our study took place across 29 prairies restored from former agricultural fields in southwestern Michigan. We considered how environmental conditions affect ecosystem functioning through and independently of measured functional traits. To do so, we paired field-collected trait data with data on plant community composition and measures of ecosystem functioning and used structural equation modelling to determine relationships between environmental conditions, community-weighted means of functional traits and ecosystem functioning. Environmental conditions were predictive of trait composition. Sites restored directly from tillage (as opposed to those allowed to fallow) supported taller species with larger seeds and higher specific leaf area (SLA). Site age and fire frequency were both negatively related to SLA. We also found a positive relationship between soil moisture and SLA. Both trait composition and environmental conditions predicted ecosystem functioning, but these relationships varied among the measured functions. Pollination mode (animal pollination) increased and fire frequency decreased floral resource availability, seed mass had a negative effect on below-ground biomass production, and vegetative height increased decomposition rate. Soil moisture and fire frequency both increased while site age decreased above-ground biomass production, and site age and soil moisture both increased decomposition rate. Synthesis and applications. Our results suggest that both trait composition and environmental conditions play a role in shaping ecosystem function during restoration, and the importance of each is dependent on the function of interest. Because of this, environmental heterogeneity will be necessary to promote multiple ecosystem functions across restored landscapes. A trait-based approach to restoration can aid interpretation of variable outcomes through insights into community assembly and ecosystem functioning.

Journal ArticleDOI
TL;DR: If diverse bee communities are to be maintained on farmland, existing schemes should contain an increased number of flowering plant species and additional schemes that increase the diversity of flowering plants in complementary habitats should be studied and trialled.
Abstract: 1. Changes in agricultural practice across Europe and North America have been associated with range contractions and a decline in the abundance of wild bees. Concerns at these declines has led to the development of flower-rich agri-environment schemes as a way to enhance bee diversity and abundance. Whilst the effect of these schemes on bumblebee species (Bombus spp.) has been well studied, their impact on the wider bee community is poorly understood. 2. We used direct observations of foraging bees and pollen load analysis to quantify the relative contribution that sown flowers (i.e. those included in agri-environment scheme seed mixes) make to the pollen diets of wild solitary bees on Higher Level Stewardship farms (HLS) implementing pollinator-focused schemes and on Entry Level Stewardship farms (ELS) without such schemes in southern England, UK. 3. HLS management significantly increased floral abundance, and as the abundance of sown flowers increased these sown plants were utilised for pollen by a greater proportion of the solitary bee species present. However, the overall proportion of pollen collected from sown plants was low for both direct observations (27.0%) and pollen load analysis (23.3%). 4. At most only 25 of the 72 observed species of solitary bee (34.7%) were recorded utilising sown plants to a meaningful degree. The majority of solitary bee species did not collect pollen from flower species sown for pollinators. 5. Total bee species richness was significantly associated with plant species richness, but there was no difference in the total species richness of either bee or flowering plant species between HLS and ELS farms. 6. Synthesis and applications. These results show that the majority of solitary bee species present on farmland in the south-east of England collect the majority of their pollen from plants that persist unaided in the wider environment, not from those included in agri-environment schemes focused on pollinators. If diverse bee communities are to be maintained on farmland, existing schemes should contain an increased number of flowering plant species and additional schemes that increase the diversity of flowering plants in complementary habitats should be studied and trialled.

Journal ArticleDOI
TL;DR: It is shown that livestock and rabbits degrade soil health through grazing, and its effects are strongest under low or moderate productivity; however, kangaroo effects are benign.
Abstract: Summary Grazing is one of the most widespread forms of intensive management on Earth and is linked to reductions in soil health. However, little is known about the relative influence of herbivore type, herbivore intensity and site productivity on soil health. This lack of knowledge reduces our capacity to manage landscapes where grazing is a major land use. We used structural equation modelling to assess the effects of recent (cattle, sheep, goats, kangaroos and rabbit dung) and historic (cattle, sheep/goat livestock tracks) herbivore activity on soil health at 451 sites across 0·5 M km2 of eastern Australia. We assessed the direct and indirect effects of increasing herbivore intensity, using dung and livestock tracks, on 15 morphological, physical and chemical attributes that are indicative of soil health, and we used these attributes to derive three indices representing the capacity of the soil to maintain its structural integrity (stability), cycle nutrients (nutrients) and maintain water flow (infiltration). Grazing had negative effects on the three soil health indices, but these effects varied with productivity. Grazing intensity was associated with strong reductions in the stability and nutrient indices under low productivity, but these effects diminished with increasing productivity. Herbivore effects on individual attributes varied in relation to productivity level and were strongly herbivore specific, with most due to cattle grazing, and to a lesser extent, sheep, goats and rabbits. Few effects due to kangaroos or historic grazing by livestock were observed. Synthesis and applications. Our study shows that livestock and rabbits degrade soil health through grazing, and its effects are strongest under low or moderate productivity; however, kangaroo effects are benign. Our findings support calls for resource management agencies to consider site productivity, as well as herbivore type and intensity, when developing strategies to manage grazing by livestock, and feral and native herbivores.

Journal ArticleDOI
TL;DR: The authors used integrated step selection analysis (iSSA) to evaluate four alternative hypotheses regarding the influence of roads on space-use behavior across 175 elk-years of elk telemetry data, and quantified both population-level and individual-level variations in responses.
Abstract: Summary Roads are a prevalent, ever-increasing form of human disturbance on the landscape. In many places in western North America, energy development has brought human and road disturbance into seasonal winter range areas for migratory elk. We sought to evaluate the predictions from the risk-disturbance hypothesis when studying elk response to roads during winter. Road proximity and crossing were used to evaluate these behaviours, which offered a rare comparison between two common measures of roads. We used integrated step selection analysis (iSSA) to evaluate four alternative hypotheses regarding the influence of roads on space-use behaviour across 175 elk-years of elk telemetry data, and we quantified both population-level and individual-level variations in responses. We demonstrated, for the first time, how iSSA can be used to combine movement analysis in a refined approach to habitat selection. Elk responded to roads as they would natural predation risk. Elk selected areas farther from roads at all times of day with avoidance being greatest during twilight. In addition, elk sought cover and moved more when in the vicinity of roads. Road crossings were generally avoided, but this avoidance was weakest during daytime when elk were both moving and closer to roads. Synthesis and applications. Energy development is transforming landscapes in western North America with the proliferation of roads, which we show is having substantial and multifaceted negative effects on elk movement and behaviour. These adverse effects can be mitigated by minimizing new road construction and by restricting traffic on roads as well as providing the protection of tree cover on elk winter ranges.

Journal ArticleDOI
TL;DR: The multiple goals of preserving high bee diversity, conserving rare species and sustaining crop pollinators can be reconciled if key plant species of different target groups are simultaneously available, facilitated by a high floral resource complementarity in the plant community.
Abstract: Summary Enhancing key floral resources is essential to effectively mitigate the loss of pollinator diversity and associated provisioning of pollination functions in agro-ecosystems. However, effective floral provisioning measures may diverge among different pollinator conservation targets, such as the conservation of rare species or the promotion of economically important crop pollinators. We examined to what extent such diverging conservation goals could be reconciled. We analysed plant–bee visitation networks of 64 herbaceous semi-natural habitats representing a gradient of plant species richness to identify key resource plants of the three distinct conservation target groups: rare bees (of conservation concern), dominant wild crop-pollinating bees and managed crop-pollinating bees (i.e. honeybees). Considering overall flower visitation, rare bees tended to visit nested subsets of plant species that were also visited by crop pollinators (46% and 77% nestedness in the dissimilarity between rare bees and wild crop pollinators or managed honeybees respectively). However, the set of preferred plant species, henceforth ‘key plant species’ (i.e. those species disproportionately more visited than expected according to their floral abundance) was considerably more distinct and less nested among bee target groups. Flower visits of all bee target groups increased with plant species richness at a similar rate. Importantly, our analyses revealed that an exponential increase in the flower abundance of the identified key plant species and complementarity in the bee visitation pattern across plant species ─ rather than total flower abundance ─ were the major drivers of these relationships. Synthesis and applications. We conclude that the multiple goals of preserving high bee diversity, conserving rare species and sustaining crop pollinators can be reconciled if key plant species of different target groups are simultaneously available. This availability is facilitated by a high floral resource complementarity in the plant community. The list of identified key resource plant species we provide here can help practitioners such as land managers and conservationists to better design and evaluate pollinator conservation and restoration measures according to their goals. Our findings highlight the importance of identifying and promoting such plant species for pollinator conservation in agricultural landscapes.

Journal ArticleDOI
TL;DR: The authors developed a spatially and temporally dynamic model to examine three decades (1982-2012) of invasive wild pigs (IWPs) expansion, and predict the spread of IWPs throughout the continental USA, relative to where they previously inhabited.
Abstract: Summary The eruption of invasive wild pigs (IWPs) Sus scrofa throughout the world exemplifies the need to understand the influences of exotic and nonnative species expansions. In particular, the continental USA is precariously threatened by a rapid expansion of IWPs, and a better understanding of the rate and process of spread can inform strategies that will limit the expansion. We developed a spatially and temporally dynamic model to examine three decades (1982–2012) of IWP expansion, and predict the spread of IWPs throughout the continental USA, relative to where IWPs previously inhabited. We used the model to predict where IWPs are likely to invade next. The average rate of northward expansion increased from 6·5 to 12·6 km per year, suggesting most counties in the continental USA could be inhabited within the next 3–5 decades. The spread of IWPs was primarily associated with expansion into areas with similar environmental characteristics as their previous range, with the exception of spreading into colder regions. We identified that climate change may assist spread into northern regions by generating milder winters with less snow. Otherwise, the spread of IWPs was not dependent on agriculture, precipitation or biodiversity at the county level. The model correctly predicted 86% of counties that were invaded during 2012, and those predictions indicate that large portions of the USA are in immediate danger of invasion. Synthesis and applications. Anti-invasion efforts should focus along the boundaries of current occupied range to stop natural expansion, and anti-invasion policies should focus on stopping anthropogenic transport and release of invasive wild pigs. Our results demonstrate the utility of a spatio-temporal examination to inform strategies for limiting the spread of invasive wild pigs.

Journal ArticleDOI
TL;DR: This study compared the performance of eight seed origins of seven plant species frequently used in grassland restoration in four common gardens across Germany and found that plants of regional origins produced 10% more inflorescences and 7% more biomass than those of foreign origins.
Abstract: Summary One of the key questions in ecosystem restoration is the choice of seed material for restoring plant communities. More and more scientists and practitioners are currently advocating the use of regional seed sources, based on the argument that plants are often adapted to local or regional environmental conditions, and thus, regional seed sources should provide the best restoration success. However, there is still substantial debate about this approach, partly because of a lack of solid empirical data. We conducted a multispecies transplant experiment in which we compared the performance of eight seed origins of seven plant species frequently used in grassland restoration in four common gardens across Germany. We found that, on average, plants of regional origins produced 10% more inflorescences and 7% more biomass than those of foreign origins. There were substantial differences among species in the strength of these effects, but in the majority of the study species fitness decreased with increasing geographical distance of seed origins or with increasing climatic differences between plant origins and experimental sites. In addition to these effects on plant fitness, increasing geographical or climatic distances of origin were often also correlated with increasing differences in plant phenology. Since phenology is important for biotic interactions, especially with pollinators and seed predators, using foreign seed sources may have cascading effects on local ecosystems. Synthesis and applications. Genetic differentiation is widespread in grassland species and often shows the patterns of regional adaptation. Our study thus supports the use of regional seed sources in restoration. Moreover, using non-regional seed sources in grassland restoration may not only decrease the performance of plants, but it will likely also affect their biotic interactions.

Journal ArticleDOI
TL;DR: A framework is defined that distinguishes how research using animal telemetry devices can influence conservation and the use of value of information analysis is suggested to quantitatively assess the return-on-investment of animaltelemetry-derived data for conservation decision-making.
Abstract: Animal-borne telemetry has revolutionized our ability to study animal movement, species physiology, demography and social structures, changing environments and the threats that animals are experiencing. While there will always be a need for basic ecological research and discovery, the current conservation crisis demands we look more pragmatically at the data required to make informed management decisions. Here, we define a framework that distinguishes how research using animal telemetry devices can influence conservation. We then discuss two critical questions which aim to directly connect telemetry-derived data to applied conservation decision-making: (i) Would my choice of action change if I had more data? (ii) Is the expected gain worth the money and time required to collect more data? Policy implications. To answer questions about integrating telemetry-derived data with applied conservation, we suggest the use of value of information analysis to quantitatively assess the return-on-investment of animal telemetry-derived data for conservation decision-making.

Journal ArticleDOI
TL;DR: Social impact assessment offers a structured process of identifying, evaluating and addressing social costs and benefits as mentioned in this paper, which can be used for enabling meaningful public participation in planning and as a key component of integrated assessments of management options.
Abstract: Summary Invasive species management aims to prevent or mitigate the impacts of introduced species but management interventions can themselves generate social impacts that must be understood and addressed. Established approaches for addressing the social implications of invasive species management can be limited in effectiveness and democratic legitimacy. More deliberative, participatory approaches are emerging that allow integration of a broader range of socio-political considerations. Nevertheless, there is a need to ensure that these are rigorous applications of social science. Social impact assessment offers a structured process of identifying, evaluating and addressing social costs and benefits. We highlight its potential value for enabling meaningful public participation in planning and as a key component of integrated assessments of management options. Policy implications. As invasive species management grows in scope and scale, social impact assessment provides a rigorous process for recognising and responding to social concerns. It could therefore produce more democratic, less conflict-prone and more effective interventions.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the effect of managed hunting and recreation on 12 terrestrial wildlife species by employing a large citizen science camera trapping survey at 1947 sites stratified across different levels of human activities in 32 protected forests in the eastern USA.
Abstract: Summary Managed public wild areas have dual mandates to protect biodiversity and provide recreational opportunities for people. These goals could be at odds if recreation, ranging from hiking to legal hunting, disrupts wildlife enough to alter their space use or community structure. We evaluated the effect of managed hunting and recreation on 12 terrestrial wildlife species by employing a large citizen science camera trapping survey at 1947 sites stratified across different levels of human activities in 32 protected forests in the eastern USA. Habitat covariates, especially the amount of large continuous forest and local housing density, were more important than recreation for affecting the distribution of most species. The four most hunted species (white-tailed deer, raccoons, eastern grey and fox squirrels) were commonly detected throughout the region, but relatively less so at hunted sites. Recreation was most important for affecting the distribution of coyotes, which used hunted areas more compared with unhunted control areas, and did not avoid areas used by hikers. Most species did not avoid human-made trails, and many predators positively selected them. Bears and bobcats were more likely to avoid people in hunted areas than unhunted preserves, suggesting that they perceive the risk of humans differently depending on local hunting regulations. However, this effect was not found for the most heavily hunted species, suggesting that human hunters are not broadly creating ‘fear’ effects to the wildlife community as would be expected for apex predators. Synthesis and applications. Although we found that hiking and managed hunting have measureable effects on the distribution of some species, these were relatively minor in comparison with the importance of habitat covariates associated with land use and habitat fragmentation. These patterns of wildlife distribution suggest that the present practices for regulating recreation in the region are sustainable and in balance with the goal of protecting wildlife populations and may be facilitated by decades of animal habituation to humans. The citizen science monitoring approach we developed could offer a long-term monitoring protocol for protected areas, which would help managers to detect where and when the balance between recreation and wildlife has tipped.

Journal ArticleDOI
TL;DR: Applied ecologists can become more effective at informing management by using approaches that explicitly take account of uncertainty, including embracing models, using decision theory, using models more effectively, thinking experimentally, and being realistic about uncertainty.
Abstract: Summary Applied ecologists often face uncertainty that hinders effective decision-making. Common traps that may catch the unwary are: ignoring uncertainty, acknowledging uncertainty but ploughing on, focussing on trivial uncertainties, believing your models, and unclear objectives. We integrate research insights and examples from a wide range of applied ecological fields to illustrate advances that are generally underused, but could facilitate ecologists’ ability to plan and execute research to support management. Recommended approaches to avoid uncertainty traps are: embracing models, using decision theory, using models more effectively, thinking experimentally, and being realistic about uncertainty. Synthesis and applications. Applied ecologists can become more effective at informing management by using approaches that explicitly take account of uncertainty.

Journal ArticleDOI
TL;DR: The results suggest that resource selection analyses that fail to consider an animal's behavioural state may be insufficient in targeting movement pathways and corridors for protection, and may result in misidentification of wildlife corridors and misallocation of limited conservation resources.
Abstract: Summary Evaluating landscape connectivity and identifying and protecting corridors for animal movement have become central challenges in applied ecology and conservation. Currently, resource selection analyses are widely used to focus corridor planning where animal movement is predicted to occur. An animal's behavioural state (e.g. foraging, dispersing) is a significant determinant of resource selection patterns, yet has largely been ignored in connectivity assessments. We review 16 years of connectivity studies employing resource selection analysis to evaluate how researchers have incorporated animal behaviour into corridor planning, and highlight promising new approaches for identifying wildlife corridors. To illustrate the importance of behavioural information in such analyses, we present an empirical case study to test behaviour-specific predictions of connectivity with long-distance dispersal movements of African wild dogs Lycaon pictus. We conclude by recommending strategies for developing more realistic connectivity models for future conservation efforts. Our review indicates that most connectivity studies conflate resource selection with connectivity requirements, which may result in misleading estimates of landscape resistance, and lack validation of proposed connectivity models with movement data. Our case study shows that including only directed movement behaviour when measuring resource selection reveals markedly different, and more accurate, connectivity estimates than a model measuring resource selection independent of behavioural state. Synthesis and applications. Our results, using African wild dogs as a case study, suggest that resource selection analyses that fail to consider an animal's behavioural state may be insufficient in targeting movement pathways and corridors for protection. This failure may result in misidentification of wildlife corridors and misallocation of limited conservation resources. Our findings underscore the need for considering patterns of animal movement in appropriate behavioural contexts to ensure the effective application of resource selection analyses for corridor planning.

Journal ArticleDOI
TL;DR: Empirical evidence is provided that models using detection–non-detection data can make similar inferences regarding relative spatial variation of the focal population to models using more expensive individual encounters when the selected spatial grain approximates or is marginally smaller than home range size.
Abstract: Summary The challenges associated with monitoring low-density carnivores across large landscapes have limited the ability to implement and evaluate conservation and management strategies for such species. Non-invasive sampling techniques and advanced statistical approaches have alleviated some of these challenges and can even allow for spatially explicit estimates of density, one of the most valuable wildlife monitoring tools. For some species, individual identification comes at no cost when unique attributes (e.g. pelage patterns) can be discerned with remote cameras, while other species require viable genetic material and expensive laboratory processing for individual assignment. Prohibitive costs may still force monitoring efforts to use species distribution or occupancy as a surrogate for density, which may not be appropriate under many conditions. Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the effectiveness of occupancy as an approximation to density, particularly for informing harvest management decisions. We combined remote cameras with baited hair snares during 2013–2015 to sample across a 70 096-km2 region of western New York, USA. We fit occupancy and Royle–Nichols models to species detection–non-detection data collected by cameras, and spatial capture–recapture (SCR) models to individual encounter data obtained by genotyped hair samples. Variation in the state variables within 15-km2 grid cells was modelled as a function of landscape attributes known to influence fisher distribution. We found a close relationship between grid cell estimates of fisher state variables from the models using detection–non-detection data and those from the SCR model, likely due to informative spatial covariates across a large landscape extent and a grid cell resolution that worked well with the movement ecology of the species. Fisher occupancy and density were both positively associated with the proportion of coniferous-mixed forest and negatively associated with road density. As a result, spatially explicit management recommendations for fisher were similar across models, though relative variation was dampened for the detection–non-detection data. Synthesis and applications. Our work provides empirical evidence that models using detection–non-detection data can make similar inferences regarding relative spatial variation of the focal population to models using more expensive individual encounters when the selected spatial grain approximates or is marginally smaller than home range size. When occupancy alone is chosen as a cost-effective state variable for monitoring, simulation and sensitivity analyses should be used to understand how inferences from detection–non-detection data will be affected by aspects of study design and species ecology.

Journal ArticleDOI
TL;DR: The authors compared tree recruitment after a decade in three restoration treatments (natural regeneration, applied nucleation/island tree planting and plantation) and nearby reference forest in the premontane rain forest zone in southern Costa Rica.
Abstract: Summary Developing restoration strategies that accelerate natural successional processes and are resource-efficient is critical to facilitating tropical forest recovery across millions of hectares of deforested lands in the tropics. We compared tree recruitment after a decade in three restoration treatments (natural regeneration, applied nucleation/island tree planting and plantation) and nearby reference forest in the premontane rain forest zone in southern Costa Rica. The study was replicated at 13 sites with a range of surrounding forest cover, enabling us to evaluate the relative influence of local restoration treatments and landscape forest cover on tree recruitment. Density of small-seeded ( 10 mm)-seeded, animal-dispersed recruits were greatest in reference forest, intermediate in applied nucleation and plantation and lowest in natural regeneration plots. Recruit composition differed substantially between reference forest and all restoration treatments. In general, plantation recruit composition was more similar to reference forests and natural regeneration least similar; however, there was high within-treatment variation. Models suggested weak support for the effect of surrounding forest cover on tropical tree recruit density and composition, as compared to restoration treatment and site conditions (e.g. elevation), in this intermediate forest cover landscape. Synthesis and applications. Applied nucleation appears to be a cost-effective strategy as compared to plantation-style planting to accelerate tropical forest recovery regardless of the amount of forest cover immediately adjacent to the site. However, even with active restoration interventions, forest recovery is a multidecade process that proceeds at highly variable rates.