scispace - formally typeset
Search or ask a question

Showing papers in "Translational Stroke Research in 2011"


Journal ArticleDOI
TL;DR: The BBB breakdown in TBI, the role of blood-borne factors in affecting the function of the gliovascular unit, changes in BBB permeability and post-traumatic edema formation, and the major pathophysiological factors associated with TBI that may contribute to post- traumatic dysfunction of the BBB are addressed.
Abstract: The blood-brain barrier (BBB) is formed by tightly connected cerebrovascular endothelial cells, but its normal function also depends on paracrine interactions between the brain endothelium and closely located glia. There is a growing consensus that brain injury, whether it is ischemic, hemorrhagic, or traumatic, leads to dysfunction of the BBB. Changes in BBB function observed after injury are thought to contribute to the loss of neural tissue and to affect the response to neuroprotective drugs. New discoveries suggest that considering the entire gliovascular unit, rather than the BBB alone, will expand our understanding of the cellular and molecular responses to traumatic brain injury (TBI). This review will address the BBB breakdown in TBI, the role of blood-borne factors in affecting the function of the gliovascular unit, changes in BBB permeability and post-traumatic edema formation, and the major pathophysiological factors associated with TBI that may contribute to post-traumatic dysfunction of the BBB. The key role of neuroinflammation and the possible effect of injury on transport mechanisms at the BBB will also be described. Finally, the potential role of the BBB as a target for therapeutic intervention through restoration of normal BBB function after injury and/or by harnessing the cerebrovascular endothelium to produce neurotrophic growth factors will be discussed.

526 citations


Journal ArticleDOI
TL;DR: Lipidomic analysis showed that DHA treatment potentiates neuroprotectin D1 (NPD1) synthesis in the penumbra 3 days after MCAo, and DHA administration provides neurobehavioral recovery, reduces brain infarction and edema, and activates NPD1 synthesis inThepenumbra when administered up to 5 h after focal cerebral ischemia in rats.
Abstract: We examined the neuroprotective efficacy of docosahexaenoic acid (DHA), an omega-3 essential fatty acid family member, in acute ischemic stroke; studied the therapeutic window; and investigated whether DHA administration after an ischemic stroke is able to salvage the penumbra In each series described below, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo) In series 1, DHA or saline was administered iv at 3, 4, 5, or 6 h after stroke In series 2, MRI was conducted on days 1, 3 and 7 In series 3, DHA or saline was administered at 3 h, and lipidomic analysis was conducted on day 3 Treatment with DHA significantly improved behavior and reduced total infarct volume by a mean of 40% when administered at 3 h, by 66% at 4 h, and by 59% at 5 h Total lesion volumes computed from T2-weighted images were reduced in the DHA group at all time points Lipidomic analysis showed that DHA treatment potentiates neuroprotectin D1 (NPD1) synthesis in the penumbra 3 days after MCAo DHA administration provides neurobehavioral recovery, reduces brain infarction and edema, and activates NPD1 synthesis in the penumbra when administered up to 5 h after focal cerebral ischemia in rats

152 citations


Journal ArticleDOI
TL;DR: In this article, the authors report how histological preparation techniques influence the extravasation pattern of the different molecular sizes of fluorescein isothiocyanate (FITC)-dextrans, typically used as markers for blood-brain barrier leakage.
Abstract: This note is to report how histological preparation techniques influence the extravasation pattern of the different molecular sizes of fluorescein isothiocyanate (FITC)–dextrans, typically used as markers for blood-brain barrier leakage. By using appropriate preparation methods, false negative results can be minimized. Wistar rats underwent a 2-h middle cerebral artery occlusion and magnetic resonance imaging. After the last imaging scan, Evans blue and FITC–dextrans of 4, 40, and 70 kDa molecular weight were injected. Different histological preparation methods were used. Sites of blood-brain barrier leakage were analyzed by fluorescence microscopy. Extravasation of Evans blue and high molecular FITC–dextrans (40 and 70 kDa) in the infarcted region could be detected with all preparation methods used. If exposed directly to saline, the signal intensity of these FITC–dextrans decreased. Extravasation of the 4-kDa low molecular weight FITC–dextran could only be detected using freshly frozen tissue sections. Preparations involving paraformaldehyde and sucrose resulted in the 4-kDa FITC–dextran dissolving in these reactants and being washed out, giving the false negative result of no extravasation. FITC–dextrans represent a valuable tool to characterize altered blood-brain barrier permeability in animal models. Diffusion and washout of low molecular weight FITC–dextran can be avoided by direct immobilization through immediate freezing of the tissue. This pitfall needs to be known to avoid the false impression that there was no extravasation of low molecular weight FITC–dextrans.

132 citations


Journal ArticleDOI
TL;DR: Observations demonstrate SAH impacts brain parenchyma by activating astrocytes and microglia, triggering up-regulation of the pro-inflammatory cytokine HMGB1.
Abstract: Subarachnoid hemorrhage (SAH) following cerebral aneurysm rupture is associated with high rates of morbidity and mortality. Surviving SAH patients often suffer from neurological impairment, yet little is currently known regarding the influence of subarachnoid blood on brain parenchyma. The objective of the present study was to examine the impact of subarachnoid blood on glial cells using a rabbit SAH model. The astrocyte-specific proteins, glial fibrillary acidic protein (GFAP) and S100B, were up-regulated in brainstem from SAH model rabbits, consistent with the development of reactive astrogliosis. In addition to reactive astrogliosis, cytosolic expression of the pro-inflammatory cytokine, high-mobility group box 1 protein (HMGB1) was increased in brain from SAH animals. We found that greater than 90% of cells expressing cytosolic HMGB1 immunostained positively for Iba1, a specific marker for microglia and macrophages. Further, the number of Iba1-positive cells was similar in brain from control and SAH animals, suggesting the majority of these cells were likely resident microglial cells rather than infiltrating macrophages. These observations demonstrate SAH impacts brain parenchyma by activating astrocytes and microglia, triggering up-regulation of the pro-inflammatory cytokine HMGB1.

104 citations


Journal ArticleDOI
TL;DR: It is hypothesized that inflammation marked by neutrophil elevation and MMP-9 release in human SAH is associated with vasospasm and with poor clinical outcome and in blood, neutrophils may be an important source of blood M MP-9 early in SAH.
Abstract: There is growing evidence supporting the role of inflammation in early brain injury and cerebral vasospasm following subarachnoid hemorrhage (SAH). Matrix metalloproteinases (MMPs) are released by inflammatory cells and can mediate early brain injury via disruption of the extracellular matrix and mediate vasospasm by cleaving endothelin-1 into vasoactive fragments. We hypothesize that inflammation marked by neutrophil elevation and MMP-9 release in human SAH is associated with vasospasm and with poor clinical outcome. We enrolled consecutive SAH subjects (N = 55), banked serial blood and cerebrospinal fluid (CSF) samples, and evaluated their 3-month modified Rankin scores (mRS). Vasospasm was defined as >50% vessel caliber reduction on angiography 6–8 days post-SAH. A poor outcome was defined as mRS > 2. We compared blood leukocyte and neutrophil counts during post-SAH days 0–14 with respect to vasospasm and 3-month outcome. In a subset of SAH subjects (N = 35), we compared blood and CSF MMP-9 by enzyme-linked immunosorbent assay (ELISA) on post-SAH days 0–1, 2–3, 4–5, 6–8, and 10–14 with respect to vasospasm and to 3-month outcome. Persistent elevation of blood leukocyte (p = 0.0003) and neutrophil (p = 0.0002) counts during post-SAH days 0–14 are independently associated with vasospasm after adjustment for major confounders. In the same time period, blood neutrophil count (post-SAH days 2–3, p = 0.018), blood MMP-9 (post-SAH days 4–5, p = 0.045), and CSF MMP-9 (post-SAH days 2–3, p = 0.05) are associated with poor 3-month SAH clinical outcome. Neutrophil count correlates with blood MMP-9 (post-SAH days 6–8, R = 0.39; p = 0.055; post-SAH days 10–14, R = 0.79; p < 0.0001), and blood MMP-9 correlates with CSF MMP-9 (post-SAH days 4–5, R = 0.72; p = 0.0002). Elevation of CSF MMP-9 during post-SAH days 0–14 is associated with poor 3-month outcome (p = 0.0078). Neither CSF nor blood MMP-9 correlates with vasospasm. Early rise in blood neutrophil count and blood and CSF MMP-9 are associated with poor 3-month SAH clinical outcome. In blood, neutrophil count correlates with MMP-9 levels, suggesting that neutrophils may be an important source of blood MMP-9 early in SAH. Similarly, CSF and blood MMP-9 correlate positively early in the course of SAH, suggesting that blood may be an important source of CSF MMP-9. Blood and CSF MMP-9 are associated with clinical outcome but not with vasospasm, suggesting that MMP-9 may mediate brain injury independent of vasospasm in SAH. Future in vitro studies are needed to investigate the role of MMP-9 in SAH-related brain injury. Larger clinical studies are needed to validate blood and CSF MMP-9 as potential biomarkers for SAH outcome.

99 citations


Journal ArticleDOI
TL;DR: Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.
Abstract: Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit, including neuronal interactions with glia and blood vessels at the blood–brain barrier (BBB). Post-traumatic changes in cerebral blood flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.

96 citations


Journal ArticleDOI
TL;DR: A large efficacy clinical trial is now needed to confirm previous studies, allow for subgroup analysis, and pinpoint the potential place for minocycline in acute stroke therapy.
Abstract: Minocycline, a tetracycline antibiotic, has shown anti-inflammatory, anti-apoptotic, and neuroprotective effects in many models of cerebral ischemia and neurodegenerative disease. Its high penetration of the blood–brain barrier, good safety profile, and delayed therapeutic window make it an ideal candidate for use in stroke. In animal models, minocycline reduced infarct size and improved neurologic outcome when administered acutely, with similar neuroprotective benefits seen following delayed administration. To date, two early phase clinical trials have shown minocycline to be safe and potentially effective in acute ischemic stroke, alone or in combination with tissue plasminogen activator. A large efficacy clinical trial is now needed to confirm previous studies, allow for subgroup analysis, and pinpoint the potential place for minocycline in acute stroke therapy.

94 citations


Journal ArticleDOI
TL;DR: The results suggest that in addition to promoting epigenetic changes in transcriptional activity in the nucleus of neurons and glia, HDACs may also have non-transcriptional actions in axons and the distant processes of glial cells and may significantly modulate the response to injury in a cell- and region-specific manner.
Abstract: Drugs that inhibit specific histone deacetylase (HDAC) activities have enormous potential in preventing the consequences of acute injury to the nervous system and in allaying neurodegeneration. However, very little is known about the expression pattern of the HDACs in the central nervous system (CNS). Identifying the cell types that express HDACs in the CNS is important for determining therapeutic targets for HDAC inhibitors and evaluating potential side effects. We characterized the cellular expression of HDACs 1–3, and HDACs 4 and 6, in the adult mouse brain in the cingulate cortex, parietal cortex, dentate gyrus, and CA1 regions of the hippocampus and subcortical white matter. Expression of class I HDACs showed a cell- and region-specific pattern. Transient focal ischemia induced by temporary middle cerebral artery occlusion, or global ischemia induced by in vitro oxygen–glucose deprivation, altered the extent of HDAC expression in a region- and cell-specific manner. The pan-HDAC inhibitor, SAHA, reduced ischemia-induced alterations in HDACs. The results suggest that in addition to promoting epigenetic changes in transcriptional activity in the nucleus of neurons and glia, HDACs may also have non-transcriptional actions in axons and the distant processes of glial cells and may significantly modulate the response to injury in a cell- and region-specific manner.

81 citations


Journal ArticleDOI
TL;DR: It is concluded that inflammation marked by NF-κB signaling is a prominent feature after IVH and may account for certain pathophysiological sequelae associated with IVH.
Abstract: Intraventricular hemorrhage (IVH), which afflicts thousands of people of all ages every year, frequently results in the development of communicating hydrocephalus. Classically, IVH-induced hydrocephalus has been attributed to reduced resorption of cerebrospinal fluid (CSF) due to dysfunction of arachnoid granulations, but this explanation may be incomplete. We hypothesized that IVH would cause inflammation of the choroid plexus and of the ependymal lining of the ventricles, resulting in dysfunction of these barrier cells. Barrier dysfunction, in turn, would be expected to cause an increase in production of abnormal protein-rich CSF and transependymal migration of CSF. We tested this hypothesis using a rat model of IVH, in which 160 μl of autologous blood was infused into the lateral ventricle, resulting in a twofold increase in ventricular size 48 h later. In this model, we found significant activation of nuclear factor κB (NF-κB) signaling by the CSF barrier cells of the choroid plexus and ependymal lining. Moreover, these inflammatory changes were associated with abnormal uptake of serum-derived IgG by the barrier cells, a phenomenon closely linked to abnormal permeability of the blood-brain barrier. We conclude that inflammation marked by NF-κB signaling is a prominent feature after IVH and may account for certain pathophysiological sequelae associated with IVH.

76 citations


Journal ArticleDOI
TL;DR: This paper reviews the nature of vascular damage after traumatic SCI and what is known about the role that angiogenic proteins—angiopoietin 1 (Ang1, Ang2 and angiogenin)—may play in the subsequent response and describes the first description of the endogenous expression of these proteins in an acute human SCI setting.
Abstract: Spinal cord injuries (SCI) can result in devastating paralysis, for which there is currently no robustly efficacious neuroprotective/neuroregenerative treatment. When the spinal cord is subjected to a traumatic injury, the local vasculature is disrupted and the blood–spinal cord barrier is compromised. Subsequent inflammation and ischemia may then contribute to further secondary damage, exacerbating neurological deficits. Therefore, understanding the vascular response to SCI and the molecular elements that regulate angiogenesis has considerable relevance from a therapeutic standpoint. In this paper, we review the nature of vascular damage after traumatic SCI and what is known about the role that angiogenic proteins—angiopoietin 1 (Ang1), angiopoietin 2 (Ang2) and angiogenin—may play in the subsequent response. To this, we add recent work that we have conducted in measuring these proteins in the cerebrospinal fluid (CSF) and serum after acute SCI in human patients. Intrathecal catheters were installed in 15 acute SCI patients within 48 h of injury. CSF and serum samples were collected over the following 3–5 days and analysed for Ang1, Ang2 and angiogenin protein levels using a standard ELISA technique. This represents the first description of the endogenous expression of these proteins in an acute human SCI setting.

72 citations


Journal ArticleDOI
TL;DR: Findings indicate the VEGF⁄VEGFR2 activation plays an important role in EPO-mediated neurobehavioral recovery and neurovascular remodeling after TBI.
Abstract: Erythropoietin (EPO) improves functional recovery after traumatic brain injury (TBI). Here, we investigated the role of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) on EPO-induced therapeutic efficacy in rats after TBI. Young male Wistar rats were subjected to unilateral controlled cortical impact injury and then infused intracerebroventricularly with either a potent selective VEGFR2 inhibitor SU5416 or vehicle dimethyl sulfoxide. Animals from both groups received delayed EPO treatment (5,000 U/kg in saline) administered intraperitoneally daily at 1, 2, and 3 days post-injury. TBI rats treated with saline administered intraperitoneally daily at 1, 2, and 3 days post-injury served as EPO treatment controls. 5-Bromo-2′-deoxyuridine was administered to label dividing cells. Spatial learning and sensorimotor function were assessed using a modified Morris water maze test and modified neurological severity score, respectively. Animals were sacrificed at 4 days post-injury for measurement of VEGF and VEGFR2 or 35 days post-injury for evaluation of cell proliferation, angiogenesis, and neurogenesis. EPO treatment promoted sensorimotor and cognitive functional recovery after TBI. EPO treatment increased brain VEGF expression and phosphorylation of VEGFR2. EPO significantly increased cell proliferation, angiogenesis, and neurogenesis in the dentate gyrus after TBI. Compared to the vehicle, SU5416 infusion significantly inhibited phosphorylation of VEGFR2, cell proliferation, angiogenesis, and neurogenesis as well as abolished functional recovery in EPO-treated TBI rats. These findings indicate the VEGF⁄VEGFR2 activation plays an important role in EPO-mediated neurobehavioral recovery and neurovascular remodeling after TBI.

Journal ArticleDOI
TL;DR: The finding that functional outcome is poorer in both acute HG and diabetes without a significant increase in infarct size suggests that amplified vascular damage contributes to neurological deficit in hyperglycemia.
Abstract: Admission hyperglycemia impacts ischemic stroke deleteriously, but the relative role of acute hyperglycemia (HG) vs diabetes in the pathogenesis of this poor outcome is not clear. The study aims to determine the effect of acute HG on neurovascular outcomes of stroke under control and diabetic conditions. Moderate acute HG (140–200 mg/dl) was achieved by glucose injection before middle cerebral artery occlusion (MCAO) in control Wistar and diabetic Goto-Kakizaki rats. Following 3 h MCAO/21 h reperfusion, we measured infarct size, hemorrhagic transformation (HT) frequency, excess hemoglobin, neurobehavioral outcome, and MCA matrix metalloprotease activity. Infarct size was significantly smaller in diabetic rats. Moderate acute HG increased neuronal damage in diabetic but not in control rats. HT frequency and hemoglobin were significantly higher in diabetic rats. HG augmented vascular damage in control rats and had no additional effect on bleeding in diabetic rats. Neurological deficit was greater in diabetic rats and was worsened by HG. The finding that functional outcome is poorer in both acute HG and diabetes without a significant increase in infarct size suggests that amplified vascular damage contributes to neurological deficit in hyperglycemia. These results highlight the importance of vascular protection to improve neurological outcome in acute ischemic stroke.

Journal ArticleDOI
TL;DR: Terminal deoxynucleotidyl transferase dUTP nick end labeling staining and immunohistochemistry showed that forebrain ischemia increased CaSR expression, decreased GABA-B-R1 expression, and promoted cell death, suggesting a new therapeutic target for treatment of ischemic brain injury.
Abstract: Hypothermia improves neurological outcome from cardiac arrest. The mechanisms of protection are multifold, but identifying some may be useful in exploring potential therapeutic targets. The extracellular calcium-sensing receptor (CaSR) was originally found in parathyroid cells in which the receptor senses minute changes in extracellular [Ca2+] and promotes Ca2+ influx and intracellular Ca2+ release. The CaSR is broadly expressed in the CNS and colocalized with the inhibitory γ-aminobutyric acid-B receptor 1 (GABA-B-R1). In hippocampal neurons, GABA-B-R1 heterodimerizes with CaSR and suppresses CaSR expression. To study the interplay between these two receptors in the development of ischemic cell death and neuroprotection by hypothermia, we subjected C57/BL6 mice to global cerebral ischemia by performing bilateral carotid artery occlusion (10 min) followed by reperfusion for 1–3 days with or without therapeutic hypothermia (33°C for 3 h at the onset of reperfusion). Terminal deoxynucleotidyl transferase dUTP nick end labeling staining and immunohistochemistry showed that forebrain ischemia increased CaSR expression, decreased GABA-B-R1 expression, and promoted cell death. These changes were particularly evident in hippocampal neurons and could be reversed by mild hypothermia. The induction of CaSR, along with reciprocal decreases in GABA-B-R1 expression, may together potentiate ischemic neuronal death, suggesting a new therapeutic target for treatment of ischemic brain injury.

Journal ArticleDOI
TL;DR: This review describes the mechanisms of the respiratory motor control and its change in individuals with spinal cord injury, methods by which respiratory function is measured, and rehabilitative treatment used to restore respiratory function in those who have experienced such injury.
Abstract: Pulmonary complications associated with persistent respiratory muscle weakness, paralysis, and spasticity are among the most important problems faced by patients with spinal cord injury when lack of muscle strength and disorganization of reciprocal respiratory muscle control lead to breathing insufficiency. This review describes the mechanisms of the respiratory motor control and its change in individuals with spinal cord injury, methods by which respiratory function is measured, and rehabilitative treatment used to restore respiratory function in those who have experienced such injury.

Journal ArticleDOI
TL;DR: It is demonstrated that brain infarction inconsistency of the neonatal hypoxia-ischemia rat pup model is related to the operation time, and shorter operation and isoflurane exposure improves this model consistency of brain Infarction and motor deficits.
Abstract: The neonatal hypoxia-ischemia rat model referred to as the Rice–Vannucci model is extensively used to study perinatal hypoxia-ischemia and child brain injury. One of the major weaknesses of this model is its inconsistency of brain infarction among animals. We hypothesize that the inconsistency of infarction is caused by prolonged operation time and therefore isoflurane exposure. Neonatal hypoxia-ischemia was induced in postnatal days 7 and 10 rat pups by unilateral right common carotid ligation followed by 2.5 h of hypoxia (8% oxygen). The incision-to-ligation (ITL) was defined as the amount of time from initial incision (4 min after 2% isoflurane exposure) to completion of carotid ligation (at which point isoflurane exposure was also terminated). In the first part of the study, the ITL of each group was designated to be 5, 13, and 21 min. In the second part of the study, the ITL is designated to 4 min; however, continued isoflurane was used to make 5, 13, and 21 min isoflurane exposure for each group. Percentages of brain infarction were assessed at 48 h following surgery. Motor deficits were accessed by Rotarod test. Marked brain infarction was observed in the 5-min ITL group and a decrease of brain infarction observed in the 13- and 21-min groups (P < 0.05). In the second part of the study, marked brain infarction was observed in the 5-min isoflurane exposure group, and a decrease of brain infarction was observed in each of the 13- and 21-min isoflurane exposure groups (P < 0.05). Similar tendencies were observed in Rotarod tests than 5-min ITL and 5-min isoflurane groups showed more marked deficits (P < 0.05). This study demonstrated that brain infarction inconsistency of the neonatal hypoxia-ischemia rat pup model is related to the operation time. The observed time-dependent decrease of brain infarction is correlated to the isoflurane exposure time. Shorter operation and isoflurane exposure improves this model consistency of brain infarction and motor deficits.

Journal ArticleDOI
TL;DR: Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampusal- dependent learning for chronic survivors of TBI.
Abstract: There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.

Journal ArticleDOI
TL;DR: It is proposed that potential compounds that demonstrate efficacy in non-rabbit animal models of acute ischemic stroke should also be tested in the rabbit embolic blood clot model and compared to tPA prior to investigation in humans.
Abstract: Animal models of acute ischemic stroke have been criticized for failing to translate to human stroke. Nevertheless, animal models are necessary to improve our understanding of stroke pathophysiology and to guide the development of new stroke therapies. The rabbit embolic clot model is one animal model that has led to an effective therapy in human acute ischemic stroke, namely tissue plasminogen activator (tPA). We propose that potential compounds that demonstrate efficacy in non-rabbit animal models of acute ischemic stroke should also be tested in the rabbit embolic blood clot model and, where appropriate, compared to tPA prior to investigation in humans. Furthermore, the use of anesthesia needs to be considered as a major confounder in animal models of acute ischemic stroke, and death should be included as an outcome measure in animal stroke studies. These steps, along with the current STAIRs recommendations, may improve the successful translation of experimental therapies to clinical stroke treatments.

Journal ArticleDOI
TL;DR: This study is the first to systematically evaluate the role of ECA transection on functional and morbidity outcomes and observed Behavioral impairments attributable to the surgical procedure were observed.
Abstract: The intraluminal filament procedure is the most common model of middle cerebral artery occlusion (MCAO). However, consequences of subtle variations in surgical technique on behavioral outcome measures have not been sufficiently explored, which is the aim of this study. Rats randomly received one of three types of transient MCAO (60 min) surgeries. The first transected the external carotid artery (ECA) for filament insertion. The other two inserted the filament in the carotid artery (CA), and after reperfusion, the CA was either ligated or blood flow restored. All animals, including shams and naive controls, were monitored with behavioral tests for 90 days. Lesion size and NeuN+cells in the striatum were comparable among MCAO groups. However, rats with ECA transection were consistently lighter than rats with permanent CA ligation, which were lighter than rats with CA reperfusion. Furthermore, rats with ECA transection exhibited the poorest lick efficiency and the greatest impairments in sensorimotor tasks. This study is the first to systematically evaluate the role of ECA transection on functional and morbidity outcomes. Behavioral impairments attributable to the surgical procedure were observed. This confounds studies and is an important issue that needs to be considered when using the intraluminal filament model.

Journal ArticleDOI
TL;DR: Clues to the pathogenesis of BAVM and/or B AVM rupture are suggested and point to potential biomarkers or new treatment targets.
Abstract: Brain arteriovenous malformations (BAVMs) are an important cause of intracranial hemorrhage (ICH) in young adults. Gene expression profiling of blood has led to the identification of stroke biomarkers, and may help identify BAVM biomarkers and illuminate BAVM pathogenesis. It is unknown whether blood gene expression profiles differ between 1) BAVM patients and healthy controls, or 2) unruptured and ruptured BAVM patients at presentation. We characterized blood transcriptional profiles in 60 subjects (20 unruptured BAVM, 20 ruptured BAVM, and 20 healthy controls) using Affymetrix whole genome expression arrays. Expression differences between groups were tested by ANOVA, adjusting for potential confounders. Genes with absolute fold change ≥ 1.2 (false discovery rate corrected p ≤ 0.1) were selected as differentially expressed and evaluated for over-representation in KEGG biological pathways (p ≤ 0.05). Twenty-nine genes were differentially expressed between unruptured BAVM patients and controls, including 13 which may be predictive of BAVM. Patients with ruptured BAVM compared to unruptured BAVM differed in expression of 1490 genes, with over-representation of genes in 8 pathways including MAPK, VEGF, Wnt signaling and several inflammatory pathways. These results suggest clues to the pathogenesis of BAVM and/or BAVM rupture and point to potential biomarkers or new treatment targets.

Journal ArticleDOI
TL;DR: The results suggest that SOD2 knockdown exacerbates ischemic brain damage under hyperglycemic conditions via increased oxidative stress and DNA oxidation and is associated with suppression of autophagy regulators.
Abstract: Both preischemic hyperglycemia and suppression of SOD2 activity aggravate ischemic brain damage. This study was undertaken to assess the effect of SOD2 mutation on ischemic brain damage and its relation to the factors involved in autophagy regulation in hyperglycemic wild-type (WT) and heterozygous SOD2 knockout (SOD2–/+) mice subjected to 30-min transient focal ischemia. The brain samples were analyzed at 5 and 24 h after recirculation for ischemic lesion volume, superoxide production, and oxidative DNA damage and protein levels of Beclin 1, damage-regulated autophagy modulator (DRAM), and microtubule-associated protein 1 light chain 3 (LC3). The results revealed a significant increase in infarct volume in hyperglycemic SOD2–/+ mice, and this was accompanied with an early (5 h) significant rise in superoxide production and reduced SOD2 activity in SOD2–/+ mice as compared to WT mice. The superoxide production is associated with oxidative DNA damage as indicated by colocalization of the dihydroethidium (DHE) signal with 8-OHdG fluorescence in SOD2–/+ mice. In addition, while ischemia in WT hyperglycemics increased the levels of autophagy markers Beclin 1, DRAM, and LC3, ischemia in hyperglycemic, SOD2-deficient mice suppressed the levels of autophagy stimulators. These results suggest that SOD2 knockdown exacerbates ischemic brain damage under hyperglycemic conditions via increased oxidative stress and DNA oxidation. Such effect is associated with suppression of autophagy regulators.

Journal ArticleDOI
TL;DR: The arsenal of armaments to effectively treat stroke is limited to one thrombolytic agent that was originally developed to treat acute myocardial infarction and subsequently approved for stroke on the basis of the National Institute of Neurological Disorders and Stroke (NINDS) trial.
Abstract: Acute ischemic stroke (AIS) is a disease of heterogeneity [1]. In patients with strokes of known causes, cardioembolic stroke is the predominant subtype making up 29% of the population, whereas both atheroembolic and lacunar strokes are represented by 16% of the population [2, 3]. Most stroke victims having multiple prevailing conditions prior to the onset of the devastating vascular event, such as hypertension or diabetes [1, 4]. Based upon the patient population enrolled in a few prominent clinical trials, it is estimated that 80–90% of all stroke patients were medicated with a variety of pharmaceuticals including antihypertensives (i.e., β-blockers), angiotensin-converting enzyme (ACE) inhibitors, diuretics, calcium channel antagonists, 3-hydroxy-3-methylglutaryl-coenzy-meA (HMG-CoA) reductase inhibitors (i.e., statins), platelet inhibitors (i.e., aspirin, clopidogrel), anticoagulants (i.e., warfarin), and antidepressants at the time of their stroke [1, 4–8]. Despite many preventative measures to reduce stroke incidence, stroke remains the third leading cause of death and leading cause of adult disability in the USA [9]. It is estimated that approximately 0.8 million victims suffer a stroke annually with 18% of victims dying. Even though there is a large population of stroke victims in the USA [9–12] and worldwide [13], and there is an enormous financial impact and burden to society [14], the arsenal of armaments to effectively treat stroke is limited to one thrombolytic agent that was originally developed to treat acute myocardial infarction [15–20] and subsequently approved for stroke on the basis of the National Institute of Neurological Disorders and Stroke (NINDS) trial [1]. However, it should be noted that in addition to the use of tissue plasminogen activator (tPA) in Japan, a single non-thrombolytic drug, which will be discussed, is also formally approved as a treatment [21].

Journal ArticleDOI
TL;DR: Recent advances of current and novel brain injury protein biomarkers and their utilities in different models of brain injury with an emphasis on stroke are reviewed, including the utility of neuroproteomics/neurosystems biology analysis as a novel discipline leading to the identification of novel biomarkers that can reach the pipeline of bench side.
Abstract: Stroke is the second leading cause of death worldwide and the third leading cause of death in the USA. A clinically useful biomarker for the diagnosis of stroke does not currently exist. Biomarkers could improve stroke care by allowing early diagnosis by non-expert clinical providers, serial monitoring of patients, and rapid assessment of severity of brain injury. With the introduction of highly advanced multidimensional separation techniques coupled with high throughput genomics/proteomics platforms, several components of the pathophysiological and biochemical pathways have been elucidated in the areas of brain trauma. A major outcome of these approaches is the discovery of biomarkers that would have important applications in diagnosis, prognosis, and even development of experimental neuroprotective drugs that have been used in different paradigms of brain injury. In this paper, we reviewed the recent advances of current and novel brain injury protein biomarkers and their utilities in different models of brain injury with an emphasis on stroke, an area that has been understudied. This will include the utility of neuroproteomics/neurosystems biology analysis as a novel discipline leading to the identification of novel biomarkers that can reach the pipeline of bench side. Additionally, an outline of biomarker-based management of traumatic brain injury and stroke patient assessments of therapeutic interventions has been included. Finally, comparison of current biomarker occurrence between preclinical models and biomarker data from human clinical studies for stroke has been summarized.

Journal ArticleDOI
TL;DR: It is argued that the few papers to date that have taken an information-intensive approach for basic neurotrauma research can be described as the seminal works of a new field that is called “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data.
Abstract: Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury Despite these advances, bench-to-bedside translation has remained elusive Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

Journal ArticleDOI
TL;DR: BP lowering with candesartan reduces early brain injury after experimental stroke even when the artery remains occluded, and the early benefits were not sustained at 7 days, as seen in reperfused animals, however.
Abstract: We have shown that reduction of blood pressure (BP) immediately after the onset of reperfusion reduced neurovascular damage and improved functional outcome after experimental cerebral ischemia and candesartan is particularly effective in improving long-term functional outcome. In this study, we sought to determine if early BP lowering with candesartan, in the presence of an occluded cerebral artery, will reduce injury and improve outcome after experimental stroke. Male Wistar rats underwent 24 h or 7 days of middle cerebral artery occlusion (MCAO). A single dose of 1 mg/kg candesartan was administered intravenously at 3 h after MCAO. Animals received neurobehavioral testing at 3 h, 24 h, and 7 days, and blood pressure was measured by telemetry. Animals had brain tissue collected for infarct size (24 h and 7 days), hemoglobin content, matrix metalloproteinase (MMP) activity, and vascular endothelial growth factor (VEGF) expression (24 h only). Candesartan significantly decreased blood pressure, infarct size (-20%; p=0.021), hemoglobin excess (-50%; p=0.0013), and edema (-35%; p=0.0005) at 24 h after MCAO. This resulted in a reduced cerebral perfusion deficit (p=0.034) in the ischemic hemisphere compared with saline and significantly improved Bederson scores and paw grasp. MMP-2, MMP-9, and VEGF were significantly increased by MCAO, but there were no differences between candesartan- and saline-treated animals. There were no significant differences in behavioral outcome at day 7. BP lowering with candesartan reduces early brain injury after experimental stroke even when the artery remains occluded. The early benefits were not sustained at 7 days, as seen in reperfused animals, however. The neuroprotection and neurorestorative properties of candesartan may occur by separate distinct mechanisms.

Journal ArticleDOI
TL;DR: Development of a successful anti-complement neuroprotective strategy will require carefully tailored inhibition coupled with a greater understanding of the functional effects of complement activation during later phases of stroke recovery.
Abstract: The complement cascade is a critical mediator of the inflammatory response following cerebral ischemia. Recent work has demonstrated that genetic deficiency of mannose-binding lectin (MBL) ameliorates reperfusion injury and improves outcome in the acute phase of stroke. The present study sought to further delineate the pathogenic role of MBL in stroke and to examine whether the neuroprotection associated with MBL deficiency is sustained beyond the acute phase. We hypothesized that genetic MBL deficiency would suppress complement activation and ameliorate reperfusion injury in the acute phase, but that persistent inhibition of complement into the subacute phase would serve to abrogate this neuroprotective effect. The time course and localization of post-ischemic cerebral MBL and C3 deposition were characterized using both Western blot and immunohistochemistry. MBL-a/c null (MBL-KO) mice subjected to transient middle cerebral artery occlusion were then employed to investigate the histologic injury and functional outcome associated with genetic MBL deletion at both 24 h and 7 days. MBL-a/c rapidly deposit on ischemic endothelium and trigger downstream complement activation in the acute phase. Genetic deficiency of MBL abrogates C3 cleavage as well as the subacute accumulation of mononuclear cells in the ischemic region. Although MBL-KO mice demonstrate significantly improved outcome at 24 h, the neuroprotective effect associated with genetic MBL deletion is not sustained. Development of a successful anti-complement neuroprotective strategy will require carefully tailored inhibition coupled with a greater understanding of the functional effects of complement activation during later phases of stroke recovery.

Journal ArticleDOI
TL;DR: There is a significant therapeutic safety window for CNB-001 and that it should be further developed as a novel neuroprotective agent to treat stroke.
Abstract: In the present study, we used a comprehensive cellular toxicity (CeeTox) analysis panel to determine the toxicity profile for CNB-001 [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl)vinyl)-2-methoxy-phenol)], which is a hybrid molecule created by combining cyclohexyl bisphenol A, a molecule with neurotrophic activity and curcumin, a spice with neuroprotective activity. CNB-001 is a lead development compound since we have recently shown that CNB-001 has significant preclinical efficacy both in vitro and in vivo. In this study, we compared the CeeTox profile of CNB-001 with two neuroprotective molecules that have been clinically tested for efficacy: the hydrophilic free radical spin trap agent NXY-059 and the hydrophobic free radical scavenger edaravone (Radicut). CeeTox analyses using a rat hepatoma cell line (H4IIE) resulted in estimated C Tox value (i.e., sustained concentration expected to produce toxicity in a rat 14-day repeat dose study) of 42 μM for CNB-001 compared with >300 μM for both NXY-059 and Radicut. The CeeTox panel suggests that CNB-001 produces some adverse effects on cellular adenosine triphosphate content, membrane toxicity, glutathione content, and cell mass (or number), but only with high concentrations of the drug. After a 24-h exposure, the drug concentration that produced a half-maximal response (TC50) on the measures noted above ranges from 55 to 193 μM. Moreover, all CNB-001-induced changes in the markers were coincident with loss of cell number, prior to acute cell death as measured by membrane integrity, suggesting a cytostatic effect of CNB-001. NXY-059 and Radicut did not have acute toxic effects on H4IIE cells. We also found that CNB-001 resulted in an inhibition of ethoxyresorufin-o-deethylase activity, indicating that the drug may affect cytochrome P4501A activity and that CNB-001 was metabolically unstable using a rat microsome assay system. For CNB-001, an estimated in vitro efficacy/toxicity ratio is 183–643-fold, suggesting that there is a significant therapeutic safety window for CNB-001 and that it should be further developed as a novel neuroprotective agent to treat stroke.

Journal ArticleDOI
TL;DR: How animal models of intracerebral hemorrhage may be utilized and targeted to facilitate translation of preclinical findings to the clinical arena is discussed.
Abstract: Although intracerebral hemorrhage (ICH) has no proven treatment, well-designed studies using animal models of ICH may lead to the development of novel therapies. We briefly review current animal models of ICH. Furthermore, we discuss how these models may be utilized and targeted to facilitate translation of preclinical findings to the clinical arena.

Journal ArticleDOI
TL;DR: It is hypothesized that HBO administered after SAH may “precondition” the brain against the detrimental sequelae of vasospasm, and the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAh; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.
Abstract: The impact of acute brain injury and delayed neurological deficits due to cerebral vasospasm (CVS) are major determinants of outcomes after subarachnoid hemorrhage (SAH). Although hyperbaric oxygen (HBO) had been used to treat patients with SAH, the supporting evidence and underlying mechanisms have not been systematically reviewed. In the present paper, the overview of studies of HBO for cerebral vasospasm is followed by a discussion of HBO molecular mechanisms involved in the protection against SAH-induced brain injury and even, as hypothesized, in attenuating vascular spasm alone. Faced with the paucity of information as to what degree HBO is capable of antagonizing vasospasm after SAH, the authors postulate that the major beneficial effects of HBO in SAH include a reduction of acute brain injury and combating brain damage caused by CVS. Consequently, authors reviewed the effects of HBO on SAH-induced hypoxic signaling and other mechanisms of neurovascular injury. Moreover, authors hypothesize that HBO administered after SAH may “precondition” the brain against the detrimental sequelae of vasospasm. In conclusion, the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAH; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.

Journal ArticleDOI
TL;DR: An inexpensive approach to characterizing the cerebrovascular anatomy, and in vivo monitoring of cerebral blood flow are reported, and a new, minimally invasive method for the occlusion of distal MCA branches is introduced.
Abstract: In humans and in animal models of stroke, collateral blood flow between territories of the major pial arteries has a profound impact on cortical infarct size. However, there is a gap in our understanding of the genetic determinants of collateral formation and flow, as well as the signaling pathways and neurovascular interactions regulating this flow. Previous studies have demonstrated that collateral flow between branches of the anterior cerebral artery and the middle cerebral artery (MCA) can protect mouse cortex from infarction after MCA occlusion. Because the number and diameter of collaterals vary among mouse strains and after transgenic manipulations, a combination of methods is required to control for these variations. Here, we report an inexpensive approach to characterizing the cerebrovascular anatomy, and in vivo monitoring of cerebral blood flow as well. Further, we introduce a new, minimally invasive method for the occlusion of distal MCA branches. These methods will permit a new generation of studies on the mechanisms regulating collateral remodeling and cortical blood flow after stroke.

Journal ArticleDOI
TL;DR: Data indicate that this neuroantigen-specific immunomodulatory agent reduces damage when administered in a therapeutically relevant reperfusion timeframe, as compared to vehicle-treated mice.
Abstract: A key target for novel stroke therapy is the regulation of post-ischemic inflammatory mechanisms. Recent evidence emphasizes the role of T lymphocytes of differing subtypes in the evolution is ischemic brain damage. We have recently demonstrated the benefit of myelin antigen-specific immunodulatory agents known as recombinant T cell receptor ligands (RTLs) in a standard murine model of focal stroke. The aim of the current study was to extend this initial observation to RTL treatment in a therapeutically relevant timing after middle cerebral artery occlusion (MCAO) and verify functional benefit to complement histological outcome measures. We observed that the administration of mouse-specific RTL551 reduced infarct size and improved sensorimotor outcome when administered within a 3 h post-ischemic therapeutic window. RTL551 treatment reduced cortical, caudate putamen, and total infarct volume as compared to vehicle-treated mice. Using a standard behavioral testing repertoire, we observed that RTL551 reduced sensorimotor impairment 3 days after MCAO. Humanized RTL1000 (HLA-DR2 moiety linked to hMOG-35-55 peptide) also reduced infarct size in HLA-DR2 transgenic mice. These data indicate that this neuroantigen-specific immunomodulatory agent reduces damage when administered in a therapeutically relevant reperfusion timeframe.