scispace - formally typeset
Open Access

c-MYC-regulated micro RNAs modulate E2F1 expression

Reads0
Chats0
TLDR
In this article, the proto-oncogene c-myc was found to activate expression of a cluster of six miRNAs on human chromosome 13 and showed that miR-17-5p and miR20a are negatively regulated by E2F1.
Abstract
MicroRNAs (miRNAs) are 21–23 nucleotide RNA molecules that regulate the stability or translational efficiency of target messenger RNAs. miRNAs have diverse functions, including the regulation of cellular differentiation, proliferation and apoptosis. Although strict tissue- and developmental-stage-specific expression is critical for appropriate miRNA function, mammalian transcription factors that regulate miRNAs have not yet been identified. The proto-oncogene c-MYC encodes a transcription factor that regulates cell proliferation, growth and apoptosis. Dysregulated expression or function of c-Myc is one of the most common abnormalities in human malignancy. Here we show that c-Myc activates expression of a cluster of six miRNAs on human chromosome 13. Chromatin immunoprecipation experiments show that c-Myc binds directly to this locus. The transcription factor E2F1 is an additional target of c-Myc that promotes cell cycle progression. We find that expression of E2F1 is negatively regulated by two miRNAs in this cluster, miR-17-5p and miR-20a. These findings expand the known classes of transcripts within the c-Myc target gene network, and reveal a mechanism through which c-Myc simultaneously activates E2F1 transcription and limits its translation, allowing a tightly controlled proliferative signal.

read more

Citations
More filters
Journal Article

MicroRNA signatures in human cancers

TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Journal Article

Oncomirs : microRNAs with a role in cancer

TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Journal ArticleDOI

miRBase: microRNA sequences, targets and gene nomenclature

TL;DR: The miRBase database aims to provide integrated interfaces to comprehensive microRNA sequence data, annotation and predicted gene targets, and acts as an independent arbiter of microRNA gene nomenclature.
Journal ArticleDOI

The widespread regulation of microRNA biogenesis, function and decay.

TL;DR: This work has shown that the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein–protein and protein–RNA interactions has an important role in the context-specific functions of miRNAs.
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

The functions of animal microRNAs

TL;DR: Evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
Journal ArticleDOI

Prediction of Mammalian MicroRNA Targets

TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
Journal ArticleDOI

The nuclear RNase III Drosha initiates microRNA processing

TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Journal ArticleDOI

MicroRNA genes are transcribed by RNA polymerase II.

TL;DR: The first direct evidence that miRNA genes are transcribed by RNA polymerase II (pol II) is presented and the detailed structure of a miRNA gene is described, for the first time, by determining the promoter and the terminator of mir‐23a∼27a‐24‐2.
Related Papers (5)
Trending Questions (1)
How does CLOCK regulate c-Myc expression?

The given text does not provide any information about how CLOCK regulates c-Myc expression.